• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Principles and Limitations of Scanning and Transmission Electron Microscopes

Extracts from this document...


The Principles and Limitations of Scanning and Transmission Electron Microscopes

Electron microscopes were first developed due to the limitations of light microscopes (3). The smallest object that can be viewed by any microscope is half the wavelength of light used, and objects smaller than this cannot be seen. This is because the object has to be large enough to interfere with the waves radiation. Light has a wavelength between 400-700nm, so the smallest object that can be viewed using visible light is 200nm(3). By the early 1930’s all the possible scientific progress on understanding the inner parts of cells had been made, and scientists wanted to see more detail. Max Knoll and Ernst Ruska then developed the electron microscopes in 1931 (7).

Electron microscopes use the same principles as light microscopes, but a beam of electrons is used instead of a beam of light. Electron beams have a wavelength of about 0.005nm. This short wavelength means much smaller objects can be seen (3). The resolution of a microscope is its ability to distinguish between two objects that are very close together. Magnification shows the objects as one larger image. The shorter the wavelength, the better the resolution. Therefore the resolution of an electron microscope is better than a light microscope. The magnification is also better.

...read more.


The electrons are focused on to the specimen by a condenser. In electron microscopes this is an electromagnet which straightens and intensifies the beam of electrons (5). Electromagnets are used to focus the beam because they can deflect the negatively charged electrons (2). After passing through the specimen, the radiation is focused by an objective lens (5). The human eye cannot see electrons, so the projector lens focuses the final image on to a fluorescent screen which emits visible light where the electrons hit (4). This gives a black and white picture. It is possible to obtain a photograph of the final image by allowing the electrons to pass on to a photographic film. This produces an electron micrograph (3).

The main advantage of a TEM is the high resolution and magnification that can be obtained. This allows very detailed images of the cell structure to be seen. However one major disadvantage of TEMs is that electrons are easily scattered or absorbed by air molecules. Therefore, the specimens must be viewed in a vacuum. This, and the fact that the specimens must be cut very thinly means there are limitations on what can be viewed using an electron microscope. Usually only dead material can be viewed (2).

...read more.


e sublimes away to leave an

etched surface. A layer of carbon is then deposited on the surface to form a replica, and this

is coated in a layer of heavy metals. The heavy metals are used because they are good

emitters of secondary electrons. The specimen can then be destroyed and the replica

viewed (1).

SEMs show the surface of the structure and have great depth of field which enables them to

give a very detailed three dimensional image(3). They can be used to study relatively large

objects. The images are likely to look more lifelike because the replica is formed before any

chemical damage is done to the specimen (5). It is possible to view some organisms alive-

some insects can withstand the vacuum.(3). However, SEMs do not have the resolving

power of TEMs (5). External disturbances such as a stray magnetic field and mechanical

vibrations can cause image distortion, jagged edge lines and other phenomena (7).


1. Adds J.        (1992)  Tools, techniques and Assessment in Biology         Nelson

   Larkcom, E.

   Miller, R.

   Sutton, R.

2. Arms, K. (1988) Biology, a journey through life                                Saunders

   Camp, P.S.

3. Green, N. P. O (1997) Biological Science 1 (Third Edition)                Cambridge

    Soper, R.

    Stout, G. W.

    Taylore, D.J.

4. Jones, G. (1997) Advanced biology                                        Cambridge

    Jones, M.

5.Marcus Barbor (2000) Biology (2000 Edition)                                Collins

   Mike Boyle                                                                Advanced Science

   Mike Cassidy

   Kathryn Senior

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Microscopes & Lenses section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Microscopes & Lenses essays

  1. Peer reviewed

    Describe the principles and limitations of transmission and scanning electron microscopes. Specific reference should ...

    3 star(s)

    cheap,portable and easy to handle.However they cannot resolve anything that is less than 0.2 micro metre apart This limit is due to the wavelength of light.For this reason they can't examine minute organisms like viruses nor can they readily allow scientists to examine individual tiny parts of cells in detail.It has low resolution(200nm)

  2. Peer reviewed

    The Principles and Limitations of Electron Microscopy.

    3 star(s)

    Composition: the elements and compounds that the object is composed of and the relative amounts of them; direct relationship between composition and materials properties e.g, melting point, reactivity, hardness...etc. Crystallographic Information: how the atoms are arranged in the object; direct relation between these arrangements and materials properties e.g, conductivity, electrical properties, strength...etc.

  1. Explain how the electron microscope has affected our knowledge of cell form and structure

    If you were to increase the magnification of an image on an electron microscope, the image would become clearer, but if you did the same with a light microscope, the image would blur.

  2. The use of the electron microscope has advanced our understanding of cell biology further ...

    . .The electron micrograph [photograph] of a virus was its official, definitive portrait." Nicolas Rasmussen, Science historian 1945 (www.bookrags.com/researchtopics/microscopes) Conclusion: Light Microscope vs. Electron Microscope "Using an instrument the size of his palm, Anton van Leeuwenhoek was able to study the movements of one-celled organisms.

  1. Bradford Museum of Film and Photography

    This therefore the critical angle is 90 degrees as the diagram shows and for the fibres to work the angle needs to be bigger than 90 for total internal reflection to occur. A fibre optic can be used as well to go around corners as seen below in this diagram.

  2. A brief history of how the light microscope has developed since the 17th Century ...

    The resolution limit is about 0.45times the wavelength. Short Wavelengths give the best (smallest) resolution .The shortest wavelength light that we can see is blue light, which has a wavelength of about 450nm. This gives a resolution of about 0.45 �450nm, which is close to 200 nm. The difference between transmission and scanning electron microscopes Commercial TEM's were developed around 1938 and SEM's from around 1965.

  1. The eye.

    Each eye forms its own image of an object so that 2 sets of impulses sent to brain (normally brain correlates these so we gain a single impression of the object) - knock on head, alcohol see double. Since each eye 'sees' a slightly different angle of same object, the combination of these two images produces a 3-D image.

  2. Optical and Electron Microscopy

    There are two types of electron microscopy, transmission electron microscopy and scanning electron microscopy. Transmission Electron Microscopy: (TEM) In a transmission electron microscope, a high voltage is applied to a heated tungsten filament, which as a result generates electrons. To accelerate the electrons, a high negative voltage is applied to

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work