• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The purpose of this laboratory investigation is to verify the validity of the Lens Equation which states that 1/di + 1/do = 1/f.

Extracts from this document...

Introduction

Lab: Applying the Lens Equation

Daniela Perdomo

Lab Partner: Stephanie Landers

Date: 21 November 2002

Place: Graded School – São Paulo, Brazil

Time: 8:10 h – 9:35 h

Purpose/Introduction: The purpose of this laboratory investigation is to verify the validity of the Lens Equation which states that1/di + 1/do = 1/f, where di is the distance from the image to the lens, do is the distance from the object to the lens, and f is the focal length.

Hypothesis: The laboratory investigators hypothesized that the data obtained in the procedure of this experiment would be consistent with the Lens Equation. Though different methods of obtaining focal lengths (f) will be used throughout the lab, the obtained f’s should still be equal.

Materials:

  • 2 double convex lenses
  • 1 candle
  • 1 box of matches
  • 1 meter stick
  • 1 lens holder
  • 1 cardholder
  • 1 candleholder
  • 1 blank card

Diagram:

Procedure:

The first lens used in this investigation was a double convex lens, which indicates that light should converge when shone through it. The first way used to discover its focal length was by using sunlight. A cardholder, with a card in it, was placed on the meter stick and the lens holder, with the convex lens in it, placed in front of it (i.e. closer to where the sunlight was coming from).

...read more.

Middle

(do)

Card distance

(di)

1/do

1/di

1/do + 1/di

(f)#

1

67.48 ± 0.1 cm

27.00 ± 0.5 cm

22.48 ± 0.2 cm

18.00 ± 0.6 cm

0.445

0.555

0.100

9.99 ± 0.4 cm

2

83.85 ± 0.1 cm

31.15 ± 0.5 cm

38.85 ± 0.2 cm

13.85 ± 0.6 cm

0.026

0.072

0.098

10.21 ± 0.5 cm

3

58.92 ± 0.1 cm

8.50 ± 0.5 cm

13.92 ± 0.2 cm

36.50 ± 0.6 cm

0.072

0.274

0.099

10.07 ± 0.9 cm

4

61.68 ± 0.1 cm

22.49 ± 0.5 cm

16.68 ± 0.2 cm

22.51 ± 0.6 cm

0.060

0.444

0.104

9.58 ± 0.4 cm

5

83.00 ± 0.1 cm

32.16 ± 0.5 cm

38.00 ± 0.2 cm

12.84 ± 0.6 cm

0.026

0.078

0.104

9.60 ± 0.6 cm

6

70.00 ± 0.1 cm

29.39 ± 0.5 cm

25.00 ± 0.2 cm

15.61 ± 0.6 cm

0.040

0.064

0.104

9.61 ± 0.4 cm

# Pleasenote: In trials 1-6 the lens was always placed at the 45.00 ± 0.

...read more.

Conclusion

Suggestions: This laboratory experiment could have been improved by using optics benches instead of the flimsy metal clips and the meter stick used in this lab. Also, though it is impossible to focus on light from infinity, the investigators could have focused on something further away, such as a passing airplane. Perhaps a transparent light bulb could have been used instead and in this manner, the laboratory investigators could look at the light-producing wire, which does not shine as intermittently as candlelight does.  

In addition to all of the above, some more trials could have been performed, and it would have been better to work with larger distances instead of being restrained by a meter stick, because although the same uncertainties would have been applied to the lens positions (all trials), card positions (Part A, “w/ candle”), and do(all trials), ± 0.1 cm uncertainty in a distance of, say, 5-meters would constitute a smaller margin of error than in merely a 1-meter distance.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Microscopes & Lenses section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Microscopes & Lenses essays

  1. To investigate the relationship between the distance between a lens and an object, and ...

    The formula for calculating the results is therefore correct in this case. It is interesting to note that the difference between the predicted and actual results is greater the closer the object is to the lens. This is because the nearer you get to the lens; the more changes and inaccuracies affect the distance of the image of the image.

  2. In this experiment I will be investigating the efficiency of a motor. I hope ...

    and the image distance (v), to two different converging lenses. I will do this by planning out how I will conduct the experiment: * Clear the work top * Setup the power supply and connect the ray box * Blue - Tack the metre rule to the work top, making

  1. Investigating the Positioning of Real Images formed by a Convex Lens.

    Subsequently I may repeat the experiment using several lenses. If I do this I will keep u fixed, in order to discover the dependant of v and f. 11. Equipment choice for precise data * I will have use a white screen, not lined or graph paper, this will ensure

  2. Does the focal length of a lens depend on the colour of light used?

    Smallest possible focal length = 0.192 x 0.8859 = 0.170(m) For blue light 0.25 + 0.02 + 10.21 = 10.48 Using 1/U + 1/V = 1/V the focal length is 0.183 meters Largest possible focal length = 0.183 x 1.1048 = 0.202(m)

  1. Relationship Between U and V For a Convex Lens

    when the lights are switched off.) * I will not play with the instruments (e.g. rulers, or swing wires). * I will take care with my lamp so that it doesn't shine into other people's eyes, which can damage their site. I will also take care in touching them (e.g.

  2. Finding the Focal Length of a Lens.

    So, we have established that the refractive index and therefore, the focal length of a lens are dependant on the frequency/wavelength of the light used. (Phew!) In order for manufacturers of lens to measure the focal length of lens, they must have a standard frequency for which the focal length of a lens is measured with.

  1. Lenses experiment

    Using the Complicated Method Uf=V U-f Magnification=V U Ray Diagram 1 2.0x4.0=-4 2.0-4.0 Magnification=-4 2.0 =-2 Ray Diagram 2 4.0x4.0=0 4.0-4.0 Magnification=0 Ray Diagram 3 6.0x4.0=12 6.0-4.0 Magnification=12.0 6.0 =2 Ray Diagram 4 8.0x4.0=8 8.0-4.0 Magnification=8 8.0 =1 Ray Diagram 5 10.0x4.0=6.7 10.0-4.0 Magnification=6.7 10.0 =0.67 From 2 different methods

  2. Proving the lens formula.

    I will take 2 measurements of Jack Webdale 02/05/2007 Page 3 Each required distance to ensure I should not have made an error. Ideally, if I would have time, I could do an average of results for one distance to ensure a reliable result each time.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work