• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Titration Experiment Write Up

Extracts from this document...


´╗┐Titration practical There is a link between the volume of alkali needed to neutralise a certain volume of acid of a known concentration. We can perform a titration of the acid and alkali, and therefore use the volume of alkali added to determine its concentration. In this investigation, we are neutralising 25 cm3 of 1 mol/dm3 of hydrochloric acid (HCl) with sodium hydroxide (NaOH) of an unknown concentration. Depending on the amount added, we can calculate its concentration using a balanced equation and other formulas. Equipments used: Chemicals used: - Conical flask - Hydrochloric acid (1 mol/dm3) - 25 cm3 pipette - Sodium hydroxide (Conc. Unknown) - Pipette filler - Phenolphthalein - Burette - Burette clamp - Retort stand - Beaker - Funnel - White tile - Small Pipette 1. Using a pipette filler, fill the pipette up to the mark (25cm3) - since the value needs to be very accurate, make sure it fills up to where the bottom of the concave meniscus touches the mark, observing from eye level. 1. Then released the acid into the conical flask. ...read more.


1. As end point is approaching (when it takes longer for solution to turn clear as it mixes) the sodium hydroxide should be added drop by drop to determine the titer more accurately - because if we add a lot at a time, there is a high possibility that it would go over the end point by more than it should. 1. As the solution turns pale pink, the titration is complete, read the end value at the bottom of the meniscus from eye level and calculate the titer. 1. The first titration will produce the rough titer, the end point would usually occur around that value. This is used to indicate about where the end point would be in further titrations. 1. Pour out the solutions in the conical flask and rinse it to remove the remainders - this is to avoid the previous solution reacting with those in the next titration 1. Repeat the titrations 2 to 3 times (steps 4 through 7), until two consecutive titer, each within 0.1 cm3 of each other, is achieved. ...read more.


For example, for my rough titration, I have forgotten to remove the funnel before titrating, so I probably used more alkali then what I recorded. However, it does not affect the end result much since I didn?t include it into my mean titer calculation, but it might be an unreliable value for my future titration to be based on. Next time, I will remember to check whether the funnel is still there before titration begins. To improve accuracy, I should add the sodium hydroxide drop by drop when it?s near the end point, taking extra care while doing so, because for both my actual titration, I accidentally released too much NaOH and the solution turned into a dark pink instead of the pale pink it?s meant to be. This means the titration is actually pass its end point a lot rather then just over when it is completely neutralised. Also, if I do this experiment again, I would repeat the titration a couple more times and calculate the mean titer from there. Other then the mistakes above, I have done as much as I can to make sure the result is as accurate as possible, therefore I think the concentration I calculated is fairly close to the actual concentration of the solution. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Determining the concentration of acid in a given solution

    5 star(s)

    I ran the sulfuric acid through quickly and made sure that the end point was defiantly reached by creating a darker pink solution. My second titration I did, 'Titration 1' I used to see how far from the endpoint I was.

  2. Peer reviewed

    Deducing the quantity of acid in a solution

    5 star(s)

    However, it is important to be sure that the meniscus is well read. For the second titration, we use a new, clean conical flask that has been rinsed with Na2CO3 and add again 25cm3 of Na2CO3. Using a clean and rinsed conical flask for the next titration will ensure us

  1. Scientific Practical Techniques

    slip and place the chamber on the microscope stage and the counting grid is brought into focus at low power. Then using different magnification until I obtain clear view of the cell and the square I did the same things over and over again for about 1 hour and half


    Calculations Calculate the concentration of each of the acid In neutralization: Moles of Base = Moles of Acid So No of Moles of NaOH = No of Moles of HCL Moles Concentration = Volume Concentration of NaOH = 1 mol Volume of NaOH = 50/1000 = 0.05dm3 Moles = concentration

  1. The Effects of Strong and Weak Acids on the Order of a Reaction.

    To keep these variables at a minimum, the following must be done: * The amount of reactants used MUST be a constant. If one piece of Magnesium is 0.11g, then the other pieces need to be 0.11g. The amount of acid used must be the same - if 4cm3 of

  2. Finding Out how much Acid there is in a Solution

    into beakers and put a little indicator in each solution, keeping these to have a record of the colour change. Method - Titration5 Now I will be ready to complete the main part of my investigation - the titration. After putting on my safety goggles, I will wash out the

  1. Determination of the solubility of calcium hydroxide

    * The equipment used: -The conical flask has to be thoroughly cleaned after each test so no remains of the past substance is left behind with the chance of affecting the following results obtained, -Make sure to keep the angle of which the burette is positioned vertical throughout all the experiments.

  2. Standardizing a Sodium Hydroxide (NaOH) Solution

    The most familiar indicators are litmus and phenolphthalein. Litmus is a vegetable dye that is red in acid and blue in base. Phenolphthalein is colourless in acid and pink in base. In practice, each indicator has an endpoint-at which it turns colour-that might be slightly different from the equivalence point of the reaction.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work