• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Titration Experiment Write Up

Extracts from this document...

Introduction

´╗┐Titration practical There is a link between the volume of alkali needed to neutralise a certain volume of acid of a known concentration. We can perform a titration of the acid and alkali, and therefore use the volume of alkali added to determine its concentration. In this investigation, we are neutralising 25 cm3 of 1 mol/dm3 of hydrochloric acid (HCl) with sodium hydroxide (NaOH) of an unknown concentration. Depending on the amount added, we can calculate its concentration using a balanced equation and other formulas. Equipments used: Chemicals used: - Conical flask - Hydrochloric acid (1 mol/dm3) - 25 cm3 pipette - Sodium hydroxide (Conc. Unknown) - Pipette filler - Phenolphthalein - Burette - Burette clamp - Retort stand - Beaker - Funnel - White tile - Small Pipette 1. Using a pipette filler, fill the pipette up to the mark (25cm3) - since the value needs to be very accurate, make sure it fills up to where the bottom of the concave meniscus touches the mark, observing from eye level. 1. Then released the acid into the conical flask. ...read more.

Middle

1. As end point is approaching (when it takes longer for solution to turn clear as it mixes) the sodium hydroxide should be added drop by drop to determine the titer more accurately - because if we add a lot at a time, there is a high possibility that it would go over the end point by more than it should. 1. As the solution turns pale pink, the titration is complete, read the end value at the bottom of the meniscus from eye level and calculate the titer. 1. The first titration will produce the rough titer, the end point would usually occur around that value. This is used to indicate about where the end point would be in further titrations. 1. Pour out the solutions in the conical flask and rinse it to remove the remainders - this is to avoid the previous solution reacting with those in the next titration 1. Repeat the titrations 2 to 3 times (steps 4 through 7), until two consecutive titer, each within 0.1 cm3 of each other, is achieved. ...read more.

Conclusion

For example, for my rough titration, I have forgotten to remove the funnel before titrating, so I probably used more alkali then what I recorded. However, it does not affect the end result much since I didn?t include it into my mean titer calculation, but it might be an unreliable value for my future titration to be based on. Next time, I will remember to check whether the funnel is still there before titration begins. To improve accuracy, I should add the sodium hydroxide drop by drop when it?s near the end point, taking extra care while doing so, because for both my actual titration, I accidentally released too much NaOH and the solution turned into a dark pink instead of the pale pink it?s meant to be. This means the titration is actually pass its end point a lot rather then just over when it is completely neutralised. Also, if I do this experiment again, I would repeat the titration a couple more times and calculate the mean titer from there. Other then the mistakes above, I have done as much as I can to make sure the result is as accurate as possible, therefore I think the concentration I calculated is fairly close to the actual concentration of the solution. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Determining the concentration of acid in a given solution

    5 star(s)

    I ran the sulfuric acid through quickly and made sure that the end point was defiantly reached by creating a darker pink solution. My second titration I did, 'Titration 1' I used to see how far from the endpoint I was.

  2. Peer reviewed

    Deducing the quantity of acid in a solution

    5 star(s)

    25cm3 of sodium carbonate is enough to find an accurate concentration. We place the conical flask under the burette's tip, leaving enough room to swirl the flask. Then we add 3 or 4 drops of methyl orange indicator. This indicator is the commonly used for titration between a strong acid (sulphuric acid)

  1. THERMOMETRIC TITRATION

    Standard enthalpy change for HCl: ?Ht = 0.071 x 4.18 x 8.5 = 2.5226 KJ Standard enthalpy change for CH3CO2H: ?Ht = 0.069 x 4.18 x 7.5 = 2.163 KJ ANSWERS 1.

  2. Finding Out how much Acid there is in a Solution

    in the solution, but there is a possibility that the concentration was not quite accurate. I will examine the effect of a very slight change in concentration of 0.001 mol dm-3, reworking the calculations using a concentration of 0.099 mol dm-3: This means that 2.48x10-3 moles of sulphuric acid were

  1. Scientific Practical Techniques

    have done this I did the same thing for pH 4 and for the other unknown PH To improve the measurement and get accurate result, I would suggest

  2. The Chemistry oh Phosphorous

    In 2007, 25% of the world's population were underfed11; this means discovering new methods of rapidly growing vast amounts of crops is an increasing necessity. Farmers and scientists are working together to find the best fertilizers that produce the highest yields, of the highest quality.

  1. Determination of the solubility of calcium hydroxide

    and clamp stand * Two funnels and a glass rod * Rubber bung Controlled Variables (What I need to do/control to make it a fair test) * The temperature of the room where the reaction is to take place * The volume of hydrochloric acid * The concentration of limewater

  2. Standardizing a Sodium Hydroxide (NaOH) Solution

    The key to observing the equivalence point of a titration is the use of an indicator to indicate when the equivalence point of the reaction has been reached. Indicators take many forms. The most familiar indicators are litmus and phenolphthalein.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work