• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To find out the internal resistance and EMF of a given power supply

Extracts from this document...

Introduction

image04.png

Internal Resistance and EMF (ELC)

Physics Portfolio By Clement Ng 12.6

Aim: To find out the internal resistance and EMF of a given power supply.

Method:

  • Arrange apparatus as shown in the below circuit diagram
  • Start off by recording the corresponding voltage (terminal pd) and current by figuring out the values available in the voltmeter and ammeter.
  • Repeat previous procedures while the external load is varied, so that you obtain a set of voltage and current readings.
  • Calculate averages and plot a graph of current against voltage. Use the graph to figure out the internal resistance and the EMF of the power supply.
...read more.

Middle

0.998

0.09

10.0

0.502

0.40

1.0

1.094

0.07

15.0

0.584

0.35

1.5

1.207

0.01

100.0

1.223

0.01

150.0

Reading #3:

Voltage (v) (± 0.01V)

Current (A) (± 0.01A)

Resistance (Ω)

(Provided on resistor)

1.061

0.10

10.0

0.460

0.45

1.0

1.089

0.07

15.0

0.580

0.38

1.5

1.193

0.01

100.0

1.215

0.01

150.0

Observations: As different external loads, or resistors were plugged into the circuit, several voltage and current readings were recorded. It was also noticed that the readings on both meters kept on jumping, therefore uncertainties of ± 0.01 was deduced for both the current and voltage values.

Skill 4 Data Processing

Arranged in increasing voltage and resistance values:

...read more.

Conclusion

Improvement 3:

To improve on graph plotting skills, we could use a computer to help us. Many computer software’s nowadays can help us plot the results and calculate the gradients directly. After the experimental results are obtained, simply copy them into the program and plot graphs of V/I. These graphs would be much more accurate then hand plotted ones, and internal resistance values would be calculated to the highest degree of accuracy.

Unfortunately, allowing the computer to do the job for you does not show any skills in data processing. Thus another improvement can be done by using calculus. Calculus is a good tool in mathematics to calculate the gradient of a known equation. The final results maybe even more accurate then the computer values. However, this would be inappropriate in this experiment, since knowing the equation would already give as the internal resistance and EMF values. This improvement maybe effective on other investigations.

By Clement Ng 12.6

Thursday, July 4 2002 05:12AM

--

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate methods of finding and comparing the e.m.f and internal resistance of different cells ...

    could be used to discover the e.m.f. Heat is also a form of resistance and may have affected the results. This means that the values may be inaccurate, depending on the length of time each source was on for and the amount of chemical reactions that had taken place in this time.

  2. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    for graphs: I expect the graphs to follow the following trend below. I have derived this from preliminary work on current and voltage using a wide range of resistors. The readings should obey ohms law. V I Apparatus: For this investigation I will need the following apparatus: * Several resistors ranging from 12 ohm to about 220 ohm.

  1. In this experiment, we will measure the e.m.f. and the internal resistance of a ...

    / (0.24 - 0.00) = 6.38 ?m = [(8.21-7) + (6.38-7)] /2 = 0.30 The e.m.f. of the dry cell: 1.24 V � 0.04 V Total internal resistance of the dry cell: 0.7? � 0.3 ? The e.m.f. of one cell = 1.29 V� 0.04V Since the resistance of the resistor was assumed to be 5.6 ?

  2. Measuring the e.m.f. And Internal Resistance of a Cell

    * ? = V + I r Rearrange to get: V = -r I + ? This equation is now in the form y = m x + C This means that ; y is the potential difference m is the negative internal resistance x is the current C is the e.m.f.

  1. Characteristics of Ohmic and Non Ohmic Conductors.

    Prior Test Before the actual experiment is carried out, it is necessary to carry out the experiment first and then take the readings. This will help us follow the procedures correctly. For the prior test I was provided with the following: * Cells * Connecting Wires * Digital Ammeter - 20 * Digital Voltmeter 20 V * Nichrome.

  2. Free essay

    Finding the internal resistance of a solar cell

    Results Conclusion I have come to the conclusion that the gradient of the line of best fit and subsequently the internal resistance of the solar cell is 5.3 within acceptable limits. I have come to this conclusion because the gradient of the graph that shows that the average or mean

  1. Investigating the Emf and the internal resistance of a dry cell.

    I can substitute these values into the formula: r =0.6 1.2 internal resistance =0.5 As there is an uncertainty with the accuracy of these results I will also use the maximum line of best fit (red line) and minimum line of best fit (blue line)

  2. The aim of the experiment is to verify the maximum power theorem and investigate ...

    Therefore, we should pay attention to the connection point between the spring balance and the wooden block during the experiment. In addition, beam balance is necessary in the experiment for measuring the masses, which have to be hung at the hanger.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work