• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate the relationship between u and v for a convex lens.

Extracts from this document...


To investigate the relationship between u and v for a convex lens. Prediction I predict that the values of u two times greater than the focal length of the lens, the image will be diminished and the value for v will be greater than the focal length of the lens but not greater than two times the focal length of the lens. The bigger u the smaller the image and closer to the focal length v is. A simple ray diagram can prove this: I also predict that the values of v less than two times the focal length but greater than the focal length the image will be magnified and the value for v will be greater than twice the focal length. The closer to the focal length v is the more magnified the image and the bigger the value of v. This can be proved by this diagram: I also predict that for the values of u less than f a virtual image will be produced as this does not connect u and v there is no point using values of u less than the focal length. Ideal Results My Ideal results are on a separate page and were calculated using the formula 1/u+1/v=1/f u= the distance of ...read more.


This is because the image for the smaller values is much larger and the value of v has a greater gap between each step than the higher values of u. Diagram Apparatus * 12 volt lamp- to produce the light must be right next to the object so the maximum light gets through * Object- a cross hair shape so it is easily identified and a clear image can be obtained each time * Convex lens * White Screen- so image can be clearly seen and observed * Metre rule- to measure u and v Method First collect apparatus noted above. Set up apparatus as shown in the diagram making sure the object and the 12-volt lamp are very close together so the maximum light gets through. The lamp must have gone through a 12-volt power supply. For each value of u make sure the object is u centimetres from the centre of the lens using a metre rule to the nearest millimetre. Once this has been done use a vertical plain white screen to focus the image on. If there is a range of distance where there is an image keep moving the screen until the clearest possible image is present on the screen. ...read more.


This could mean that the full amount of light is not going through the object therefore changing the distance of v. This problem can be solved by focusing the light so that it only goes through the object therefore increasing the light intensity. A second problem with the experiment is that the object is made of glass and this diverges the rays slightly so when the light reaches the lens not all the light then gets focused therefore changing the length of v. The way of remedying this problem would be to make the object out of a transparent material that would not bend the light. Or focus the light towards the centre of the object so the amount of light that is diverged is cut down. Further tests that could be done are the differences in different types of objects using different materials. Also seeing if the dimming the lights has on the experiment to see if the light intensity makes any difference to the results. The evidence of my results is not quite accurate enough to support my conclusion in full. However this not due to the experiment this is more down to human error. Also interpretation of where the image is at its clearest varies from person to person therefore making my results slightly inaccurate. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Microscopes & Lenses section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Microscopes & Lenses essays

  1. Peer reviewed

    Physics coursework; Finding the focal length of a lens using a graphical method.

    4 star(s)

    Distance from image to lens (mm) Experiment number Distance from lens to screen (mm) u v 250 1 402 2 408 3 406 275 1 364 2 357 3 355 300 1 316 2 323 3 319 325

  2. To investigate the relationship between the distance between a lens and an object, and ...

    The distance from the lens to the card, when the image is in focus gives the focal length. Ray diagrams are a simple way of demonstrating how light passes through a lens, and also why the effects happen. Ray diagrams: Convex Lens Concave Lens Considering the facts outlined above, I

  1. My experiments focus is to obtain an accurate measurement for a specific lenss power.

    However the imaging problem opposed this improvement and lead to a higher uncertainty in the final measurement. Also the fact its largest uncertainty (0.0914) is larger than the filament lamp's largest (0.0873) insinuates that it is generally less reliable for measurements.

  2. Finding the Focal Length of a Lens.

    Notice how the focal length are different, and this must have resulted from the theory that the refractive index is dependant of the frequency of light used because the same lens was used to focus the two different coloured dots.

  1. Lenses experiment

    A ray diagram is not required for the complicate method but a ray diagram is required for the simpler method, so if the ray diagram is inaccurate then the answer for the magnification using the simpler method should in theory be as inaccurate also.

  2. In this experiment I will be investigating the efficiency of a motor. I hope ...

    To use the light gate instrument I would place the weight at the start when it starts to moving towards the motor it will pass a sensitive sensor that then turn the time of through some kind force mechanism. This could divide the human error by about ten.

  1. Lenses - experiment plan

    This process was repeated with a concave lens Results As every good scientist knows the results are the main aim of the experiment and recording the results is even more important My results are attached on the A3 pieces of paper.

  2. Investigating the Positioning of Real Images formed by a Convex Lens.

    Accurate focusing of the image is achieved by screwing the lens backwards or forwards in its holder to suit the particular object distance. 8. The independent variables that might be relevant The formula that I worked out was, 1/u + 1/v = 1/f .

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work