• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To measure the resistance of a current, flowing through different lengths of Nichrome Wires

Extracts from this document...


Science Coursework                Andrew Robson


Aim: To measure the resistance of a current, flowing through different lengths of Nichrome Wires

Prediction: I Predict that a shorter wire will have less resistance than a longer piece of the same substance.

Resistance is the property of any object or substance of resisting or opposing the flow of an electrical current. The quantity of resistance in an electric circuit determines the amount of current flowing in the circuit for any given voltage applied to the circuit. The unit of resistance is the ohm, the amount of resistance that limits the passage of current to one ampere when a voltage of one volt is applied to it. The standard abbreviation for electric resistance is R and the symbol for ohms in electric circuits is the Greek letter omega,   .

 The resistance of an object is determined by a property of the substance of which it is composed, known as the resistivity, and by the length and cross-sectional area of the object, and by the temperature.

...read more.








Current flows in an electric circuit in accordance with several definite laws. The basic law of current flow is Ohm's law, named after its discoverer, the German physicist George Ohm. Ohm's law states that, over a wide range of circumstances and materials, the amount of current flowing through a conductor is directly proportional to the electromotive force applied between the ends of the conductor. If resistance is defined as the ratio of electromotive force to current, then
V = IR, where I is the current in amperes, V is the electromotive force in volts (see Electrical Units), then Ohm's law is equivalent to saying that R (which is measured in ohms) is a constant in the specified circumstances. A material for which this holds true is described as ohmic. Ohm's law can apply to electric circuits for both direct current (DC) and alternating current (AC), but additional principles must be invoked for the analysis of complex circuits and for AC circuits involving inductances and capacitances.




...read more.



The possible variables in this experiment are:

  • The Amount Of Cells in the Circuit
  • The Length Of The Wire
  • The Settings Of The Variable Resistor

The independent variables for this experiment are the Number Of Cells and the length of the wire

The dependant variable is the amount of resistance in the circuit.

Safety Precautions:

Because we are dealing with electricity it is important to take safety precautions such as:

  • Don’t Have Wet Hands When Constructing The Circuit.
  • Make Sure Before We Start the experiment know how to use each piece of equipment safely to avoid shocks
  • Don’t Play with the circuit layout and batteries to avoid shocks

Apparatus: 3 cells, 1 variable resistor, connecting wires, crocodile clips,

Nichrome wire, Ammeter, Voltmeter

Circuit Diagram:









  1. We set up the circuit with 1 cell in
  2. We fixed the variable resistor so we could take a reading
  3. We tested 10mm of nichrome wire and took readings of the volts and amps
  4. We tested 20mm, 30mm and so on until we got to 1m of wire
  5. We set up the circuit with 2 cells in
  6. We took new readings on the wires
  7. We set up the circuit with 3 cells in
  8. We took new readings on the wires

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Peer reviewed

    Measurement of the resistivity of Nichrome

    5 star(s)

    In order to get an appreciable and accurate resistance, the specimen I use must be long enough and thin enough. Therefore I am going to use two 1-metre-long Nichrome wires with different gauges as the experimental material. > Wire A - 28-gauge Nichrome wire > Wire B - 32-gauge Nichrome wire The following method was used to gain the data.

  2. Peer reviewed

    Solar cells

    3 star(s)

    Information on the website is to educate their clients of the products and future prospects the company are supplying. I found information from the website to be reliable and simple to understand. * How Stuff Works - http://science.howstuffworks.com/solar-cell1.htm. (Last Accessed: 08/04/10)

  1. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    .007 .006 .113 .091 .077 .060 .042 .029 .020 .014 .011 .009 .007 .006 Average readings were: Resistor (ohms) Average voltage (V) (+- 5%) Average Current (mA) (+- 5%) 12 15 18 22 33 47 68 100 120 150 180 220 1.35 1.36 1.37 1.38 1.40 1.41 1.42 1.42 1.42

  2. Experiment on Resistance - different lengths of wire.

    if you wanted resistance, you need to know the current and voltage first). This is what the three equations are: Potential difference across the wire (Voltage) Current through the wire Potential difference across the wire (Voltage) Resistance Current through the wire x Resistance All resistance is measured in Ohms ( ).

  1. The varying of the resistance of nichrome wire depending on its length

    Resistance is caused when they collide with atoms. Therefore, when the temperature is increased the collisions will also increasing, thus increasing the resistance. Resistors (sometimes made of a length of nichrome wire) can be used to reduce the current in a circuit. One use for a resistor is when the current flowing needs to be controlled, e.g.

  2. Investigating the effect of 'length' on the resistance of a wire

    Being one of the best metal conductors, copper's resistance was very low. On the other hand the constantan wire gave a higher resistance. As I was investigating one of the factors affecting resistance I found the second wire, constantan, with a higher resistance more appropriate for my experiment.

  1. Characteristics of Ohmic and Non Ohmic Conductors.

    According to the above given formula, the resistance can be noticed by the gradient. The gradient of the graph of Aluminium is more and so the resistance will be less. This will quite the opposite for nichrome. So therefore the Aluminium has less resistance we notice from the graph.

  2. resistivity if a nichrome wire

    I will ensure that I use the same wire throughout my experiment. By doing this I have abolished any chances of having wires of different resistively, cross sectional area or densities. Equipment Faults in the equipment due to them being old or broken might affect my results.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work