VO2 Max and Aerobic Power.

Authors Avatar

VO2 Max and Aerobic Power

(Activity 26)

The Introduction

Oxygen is one of the vital elements of life because it acts as a fuel for aerobic respiration, which is the energy source in all organisms (the other fuel being glucose). Without energy from respiration, organisms simply die. As an organism (in this case me, a human) does work, it needs more energy. Thus it will need more fuel and particularly more oxygen since glucose can be stored in the body. The oxygen intake increases as the rate of work done increases, up to a limit known as your VO2 max.

VO2 max is the maximum volume of oxygen uptake (hence the V in VO2) anyone can use. It is measured in millilitres per minute per kilogram of body mass (mlO2 min-1 kg-1). People who are more fit have higher VO2 max values and can exercise more intensely than those who are not very fit.

Factors Affecting VO2 Max

The physical limitations that restrict the rate at which energy can be released aerobically are dependent upon:

  • The chemical ability of the muscular cellular tissue system to use oxygen in breaking down fuels and,
  • The combined ability of cardiovascular and pulmonary systems to transport the oxygen to the muscular tissue system.1

The Aim

VO2 max can be measured in a variety of ways1. The aim of this experiment is to find out the subjects VO2 max and then covert it to the total aerobic power output.

The Method

VO2 max can be measured fairly accurately by doing a “shuttle run” style test (known as “The Multistage Fitness Test” A.K.A. “The Beep Test”). Basically, someone has to run a 20 meter track at the starting speed of 8.5 kmh-1 for one minute. Once the person finishes the 20 meter track, they must run back at the same speed, and thus we get an oscillating pattern from one end of the track to the other until the minute is over.

The speed is increased by 1 kmh-1 every minute (so after one minute of running at 8.5 kmh-1, the person must run the second minute at 9.5 kmh-1). The same pattern is repeated only this time, because the person (the subject) is running at a higher speed during the same amount of time (one minute), they are going to cover a larger distance and therefore more of the 20 meter laps (in theory anyway).

This fact only works in theory because will most of the speeds, the subject can not run a set (integer) number of laps in exactly one minute. It turns out that if the subject runs at 8.5 kmh-1 for one minute, they will cover 7.08 laps. This is impractical (how can you tell that the subject ran 7.08 laps!) and so the number of laps must be rounded up or rounded down to an integer number of laps. Once a set number of integer laps are set, we work out the time taken to run the integer number of laps. (Refer to Columns [5] and [6]).

The subject continues running until he or she can no longer keep up the pace. The speed that the subject sustains (i.e. the speed before the speed that the subject stops on) is known as the Maximum Aerobic Speed (MAS) and is measured in kmh-1. Once we have the MAS, we can work out the VO2 max in the following formula:

VO2 max = 31 + 3.2 x (MAS  Subject’s Age [years]) + 0.15 x MAS x Age

The unit for VO2 max is: mlO2 min-1 kg-1.

(Note: The above formula is a “conversion formula developed by researchers, to give an accurate measure of VO2 max”. See Activity Sheet 26)

After calculating the VO2 max, we can convert it to maximum aerobic power output. Because the subject will be working with a high energy output, running requires a lot of energy; the only way to keep going is by aerobic respiration. Anaerobic respiration doesn’t provide the high amounts of energy that are needed in such exercises, especially for longer periods of time e.g. ten minutes.

Join now!

For every litre of oxygen consumed, the subject’s muscles use 20kJ of energy. The total amount of oxygen consumed in a minute is the VO2 max multiplied by the body mass of the subject. This gives us the total oxygen intake of the subject in ml per minute (mlO2 min-1), since VO2 max is millilitres of oxygen per kilogram of body mass per minute. Once we have the total oxygen intake in mlO2 min-1, we multiply it by 20 (if 1 litre gives 20,000 J, then 1 millilitre will give 20 J) to get the total amount of energy used (i.e. power) in ...

This is a preview of the whole essay