• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

What affects the kinetic energy of a trolley?

Extracts from this document...

Introduction

Daniel Cheetham - Science Physics

What affects the kinetic energy of a trolley?

In this experiment I will be trying to see if the amount a spring is compressed affects the speed of a Trolley when released against the trolley. I’ll be using a ‘light gate’ attached to a time to help me to find out how fast the trolley passes the light gate out, from this I will be able to figure out the speed and how much Kinetic energy the trolley has.

Plan

Aim:
To see if the amount a spring is compressed by affects the speed of the trolley pushed by the spring.  I will also be looking to see if I can find any patterns in the results I get and see if there is any way I can predict what.

Variables:
Independent Variable:
In this experiment I will have only one independent variable, which I will change though out the experiment. The independent variable will be how much the spring is compressed, each time I compress the spring I will increase it by another centimetre until I have done it from 1 – 15 cm. From this

...read more.

Middle



Also if I double the compression I’d double the amount of kinetic energy used. E.g. 1cm would be 10j, 2cm would be 20j, 3cm would be 40j and 4cm would be 80j etc

Method:
I did this experiment using a computer simulation but if I would of done this experiment to keep it a fair test I would of made sure that each time I did the test I’d only change in independent variables. I would of started by setting a spring loaded plunger behind a Trolley so I’ll be able to set the spring up compressed at different amounts, that when released will push the trolley, as the trolley is travelling I’ll read the amount of time that the trolley takes to pass a light gate and then from the amount of time it took to pass the light gate, I can work out how fast the trolley was travelling at.

Each time I’d do the experiment again I’d increase the amount that the spring is compressed, I would increased it by another Centimetre, by doing this I’d be

...read more.

Conclusion



I could try adding on another variable, this variable could be the distance that the trolley travels; this would help me see if the amount the spring was compressed by affects the distance that the trolley would travel or if it just changes the speed that the trolley travels at.

Another improvement I could make is by testing to see if when I double the amount spring is compressed by, always doubles the speed, e.g. would the speed of the trolley when the spring is compressed at ten centimetres be half the amount of when it’s compressed by 20cm.

Extending the experiment:
One extension to the experiment that I could do is by seeing if the weight oft eh trolley affects the speed it travels at. To do this I’d have to test the spring compressed at each amount at several times, each time adding a set amount of weight.

By doing this it could help me to find out two things. The first one being seeing if the speed is affected, if Trolley’s weight had changed the Trolleys speed The other one being to see if there is more of less kinetic energy in the trolley, if the speed is less there should be less kinetic energy.




        -  -

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Peer reviewed

    What affects the voltage output of a solar panel?

    3 star(s)

    However I will try eliminating the background reading by taking a background reading before turning on the ray box and subtracting the two values. Light could also be reflected from the shiny table surface.

  2. What factors affect the period of a Baby Bouncer?

    The averages will be put together in order to discover a reliable period of oscillation for each mass used. Human error will be aimed to be kept as minimal as it can be, by being as accurate and consistent as possible in experimental technique.

  1. Investigation on how putting springs in series and parallel affects their extension.

    the two springs in series were reliable as all of my points lie almost directly on their lines of best fit and I do not have any anomalous results for the extension of the single spring or for the extension of the two springs together in series.

  2. The Stiffness Of Springs

    To make sure that while I am testing the spring constant I do not exceed the spring constant I am going to test a similar spring to the ones I will be using. I am going to place enough weights on to it to just take it past its elastic limit.

  1. An Experiment To Examine the Effect of Springs In Parallel

    From using what I know, I don't think that I would find out much of a conclusion to the question if I changed both the load and number of springs. * Distance- between springs I will keep the same distance between each spring.

  2. Investigation of the structure of a cantilever beam.

    As I have four sets of results I can take an average to give a result that is more accurate. Similarly I took 3 readings for the depth of the ruler at any three different places of the ruler by using a screw gauge to give an average depth of the ruler.

  1. Waves and Cosmology - AQA GCE Physics Revision Notes

    The original radiation would have been in the visible region, but it has been red shifted as energy is lost from the photon due to expansion of the universe. * As a microwave receiver is set up, a signal of wavelength 735 cm was picked up when no signal was sent.

  2. I intend to investigate whether any correlation exists between the wavelength of light exerted ...

    When booted, the bootloader loads the code and this has an overhead that can range wildly (±20 microseconds). As such, the micros() function I am using to represent response time in my code has an uncertainty of ±20 microseconds. The real response time could lie anywhere ±20 microseconds from the stated value.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work