• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

What affects the kinetic energy of a trolley?

Extracts from this document...


Daniel Cheetham - Science Physics

What affects the kinetic energy of a trolley?

In this experiment I will be trying to see if the amount a spring is compressed affects the speed of a Trolley when released against the trolley. I’ll be using a ‘light gate’ attached to a time to help me to find out how fast the trolley passes the light gate out, from this I will be able to figure out the speed and how much Kinetic energy the trolley has.


To see if the amount a spring is compressed by affects the speed of the trolley pushed by the spring.  I will also be looking to see if I can find any patterns in the results I get and see if there is any way I can predict what.

Independent Variable:
In this experiment I will have only one independent variable, which I will change though out the experiment. The independent variable will be how much the spring is compressed, each time I compress the spring I will increase it by another centimetre until I have done it from 1 – 15 cm. From this

...read more.


Also if I double the compression I’d double the amount of kinetic energy used. E.g. 1cm would be 10j, 2cm would be 20j, 3cm would be 40j and 4cm would be 80j etc

I did this experiment using a computer simulation but if I would of done this experiment to keep it a fair test I would of made sure that each time I did the test I’d only change in independent variables. I would of started by setting a spring loaded plunger behind a Trolley so I’ll be able to set the spring up compressed at different amounts, that when released will push the trolley, as the trolley is travelling I’ll read the amount of time that the trolley takes to pass a light gate and then from the amount of time it took to pass the light gate, I can work out how fast the trolley was travelling at.

Each time I’d do the experiment again I’d increase the amount that the spring is compressed, I would increased it by another Centimetre, by doing this I’d be

...read more.


I could try adding on another variable, this variable could be the distance that the trolley travels; this would help me see if the amount the spring was compressed by affects the distance that the trolley would travel or if it just changes the speed that the trolley travels at.

Another improvement I could make is by testing to see if when I double the amount spring is compressed by, always doubles the speed, e.g. would the speed of the trolley when the spring is compressed at ten centimetres be half the amount of when it’s compressed by 20cm.

Extending the experiment:
One extension to the experiment that I could do is by seeing if the weight oft eh trolley affects the speed it travels at. To do this I’d have to test the spring compressed at each amount at several times, each time adding a set amount of weight.

By doing this it could help me to find out two things. The first one being seeing if the speed is affected, if Trolley’s weight had changed the Trolleys speed The other one being to see if there is more of less kinetic energy in the trolley, if the speed is less there should be less kinetic energy.

        -  -

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Peer reviewed

    What affects the voltage output of a solar panel?

    3 star(s)

    further improve it, I decided to make the following changes to increase my accuracy. * There are two ways to increase the distance between the ray box and the solar cell; either moving the ray box or solar cell.

  2. What factors affect the period of a Baby Bouncer?

    The averages will be put together in order to discover a reliable period of oscillation for each mass used. Human error will be aimed to be kept as minimal as it can be, by being as accurate and consistent as possible in experimental technique.

  1. Stretching Springs/Hookes Law.

    -I will then put the weights on the spring and to make it a fair test and I will make sure I put the weights on slowly so I don't damage the spring and I will make sure I put the weights on when the spring isn't swinging because it

  2. Investigating the Vertical Oscillations of a Loaded Spring.

    I will use springs, which have the same length to start off with. I will record the time to the nearest 2 decimal places. Analysis: As I said above I shall use two separate methods to work out elastic constant.

  1. My aim in this experiment is to find out how force affects the extension ...

    Repeat the experiment again, but this time increasing the weight by 1N Diagram: Safety Safety precautions were taken to reduce the risks of accidents occurring. To make sure my experiment was safe someone in my group held down the clamp, to prevent it from falling over and hurting anyone.

  2. Study the interference of light using Helium - Neon Diode Laser.

    The lines joining the dots C,E,G on the screen. Similarly, the crosses represent the positions of destructive interference, where the crest of one wave falls on trough of other and vice-versa. The resultant amplitude and hence the intensity of light is minimum at these positions. The lines joining the crosses lead to points D, F on the screen, thus,

  1. Investigation of the structure of a cantilever beam.

    I also took 3 readings for the breadth of the ruler using a vernia calapus to give me an average length. An average is taken for almost all the reading to minimise errors while calculating the young's modulus of the ruler.

  2. Waves and Cosmology - AQA GCE Physics Revision Notes

    If the nucleus gets too big, the strong force breaks and emits alpha particles. * Electromagnetic force is found exerted between charged particles at rest / in motion. So it affects the charged quarks and leptons. The exchange particle is the photon, photons have no mass and this leads to an infinite range (chargeless)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work