What is Bernoulli’s Principle? Give examples of its diverse ‘use’ or ‘exploitation’ in animals.

Authors Avatar
Tom Clements

What is Bernoulli's Principle? Give examples of its diverse 'use' or 'exploitation' in animals.

All living organisms inhabit a world governed by mechanical laws and processes. For all organisms, too, the primary daily task is the search for food. This is not only limited in quantity but can also be energetically costly to obtain. As a result many animals have evolved ways of harnessing these mechanical processes to assist them in performing tasks which would otherwise require the expenditure of chemical energy. In the world of energy economy these adaptations can prove crucial to survival.

The major form of mechanical energy that exists is expressed in the form of flows (air and water currents driven by the sun). When these fluids flow across a solid surface (such as the ground or an animal's body) the velocity difference can be converted into useful forms of energy. This energy can either be used to move a fluid (called induced flow) or a solid through the application of the principle of conservation of energy in a steadily moving fluid called Bernoulli's Principle after the Swiss mathematician Daniel Bernoulli who formulated it in 1738.

Bernoulli's Principle considers the relationship between the pressure, velocity and elevation in a moving fluid, the compressibility and viscosity of which are negligible and the flow of which is steady or laminar. It states, in effect "that the total mechanical energy of the flowing fluid, comprising the energy associated with fluid pressure, gravitational potential energy of elevation, and the kinetic energy of fluid motion, remains constant" (Encyclopaedia Britannica). This implies that "if a fluid moves horizontally so that there is no change in gravitational potential energy, the pressure of the fluid must decrease whenever its velocity increases so that its total energy remains constant" (Vogel, 1978). Two major processes arise from this principle: the induced movement of either a solid or a fluid (liquid or gas). Living organisms employ either one, or the other, or both.

The first is adequately illustrated by the phenomenon known as lift. A simple demonstration of lift is to hold the edge of a piece of paper to your lips and blow across its upper surface - the paper should rise as a result of the reduced air pressure above it caused by the faster moving air.

The second is the induced flow of fluids. Another mechanical process known as viscous entrainment is also effective here and can contribute to the effect produced by Bernoulli's Principle. Viscous entrainment is the force that causes fluid to be drawn out of a pipe whose opening is orientated perpendicularly to the flow of the current. For an example of how induced flow can operate consider a fluid moving through a horizontal pipe that narrows and widens at various points. The fluid will speed up in the narrow sections (by the continuity principle), and so it will exert the least pressure in those areas were the diameter is smallest. This is known as a Venturi Tube. If a small pressure-measuring device is connected between the two areas this can be proved: the fluid in the small tube of the device will flow from the area of high pressure (at the wide aperture) to the region of low pressure (at the low aperture). Another application is demonstrated by the flow of smoke up a chimney. When the wind speed increases the flow of smoke increases, regardless of the direction of the wind, because the pressure at the top of the chimney is low. Viscous entrainment contributes to this effect.

Further applications can be demonstrated by examining the pressure on bodies at certain points along their shape when they are exposed to a flowing fluid. Consider a solid body of radially symmetrical streamlined form with fluid flowing lengthwise along it. At the front of the body local flow is zero and the pressure is high, because the current has been brought to a halt. At the sides, where the width is greatest, the velocity of the fluid is high: the body is an obstruction that reduces the space available and the fluid has speeded up to get around. Therefore the pressure is low. This model shows how pressure differences can be created in swimming fish, for example, to create an environment in which the induced flow of a fluid can be produced.

The model mentioned above is the similar to the situation in which lift is produced. Consider a solid formed by cutting the previous solid in half laterally and exposed to a fluid again flowing lengthwise along it. Here again the pressure will be lowest on the side where the width is greatest, however on the opposite side the velocity and hence pressure will remain unchanged (because we have cut the solid in half) therefore the solid will move towards the area of low pressure. If performed vertically this is called lift.
Join now!


In summary therefore we can say that Bernoulli's principle basically describes the affect of pressure differences created when currents of different velocities move across a solid surface. This surface can either be fixed or mobile. If it is fixed then there are two recognised geometric forms in nature that have evolved to utilise the pressure gradients produced - Type I and Type II. These geometric forms are designed to capture a current and use it regardless of which direction it is coming from (i.e. turning a multidirectional current into a unidirectional one). Mobile organisms are more specialised because ...

This is a preview of the whole essay