What is the Human Genome Project?

Authors Avatar

What is the Human Genome Project?

Begun formally in 1990, the U.S. Human Genome Project is a 13-year effort coordinated by the U.S. Department of Energy and the National Institutes of Health. The project originally was planned to last 15 years, but rapid technological advances have accelerated the expected completion date to 2003. Project  are to

  • identify all the approximate 30,000 genes in human DNA,
  • determine the sequences of the 3 billion chemical base pairs that make up human DNA,
  • store this information in databases,
  • improve tools for data analysis,
  • transfer related technologies to the private sector, and
  • address the ethical, legal, and social issues (ELSI) that may arise from the project.

To help achieve these goals, researchers also are studying the genetic makeup of several nonhuman organisms. These include the common human gut bacterium Escherichia coli, the fruit fly, and the laboratory mouse.

A unique aspect of the U.S. Human Genome Project is that it is the first large scientific undertaking to address the ELSI implications that may arise from the project.

Another important feature of the project is the federal government's long-standing dedication to the transfer of technology to the private sector. By licensing technologies to private companies and awarding grants for innovative research, the project is catalyzing the multibillion-dollar U.S. biotechnology industry and fostering the development of new .

What's a genome? And why is it important?

  • A genome is all the DNA in an organism, including its genes. Genes carry information for making all the proteins required by all organisms. These proteins determine, among other things, how the organism looks, how well its body metabolizes food or fights infection, and sometimes even how it behaves.
  • DNA is made up of four similar chemicals (called bases and abbreviated A, T, C, and G) that are repeated millions or billions of times throughout a genome. The human genome, for example, has 3 billion pairs of bases.
  • The particular order of As, Ts, Cs, and Gs is extremely important. The order underlies all of life's diversity, even dictating whether an organism is human or another species such as yeast, rice, or fruit fly, all of which have their own genomes and are themselves the focus of genome projects. Because all organisms are related through similarities in DNA sequences, insights gained from nonhuman genomes often lead to new knowledge about human biology.

What are some practical benefits to learning about DNA?

Knowledge about the effects of DNA variations among individuals can lead to revolutionary new ways to diagnose, treat, and someday prevent the thousands of disorders that affect us. Besides providing clues to understanding human biology, learning about nonhuman organisms' DNA sequences can lead to an understanding of their natural capabilities that can be applied toward solving challenges in health care, energy sources, agriculture, and environmental cleanup.

What are some of the ethical, legal, and social challenges presented by genetic information and what is being done to address these issues?

The Department of Energy and the Natonal Institutes of Health Genome Programs set aside 3%-5% of their respective annual budgets for the study of the project's ethical, legal, and social issues (ELSI). Nearly $1 million has been spent on ELSI research to date.

Rapid progress in genome science and a glimpse into its potential applications have spurred observers to predict that biology will be the foremost science of the 21st century. Technology and resources generated by the Human Genome Project and other genomics research are already having a major impact on research across the life sciences. The potential for commercial development of genomics research presents U.S. industry with a wealth of opportunities, and sales of DNA-based products and technologies in the biotechnology industry are projected to exceed $45 billion by 2009 (Consulting Resources Corporation Newsletter, Spring 1999).

Some current and potential applications of genome research include

  • molecular medicine
  • microbial genomics
  • risk assessment
  • bioarchaeology, anthropology, evolution, and human migration
  • DNA forensics (identification)
  • agriculture, livestock breeding, and bioprocessing

Rapid progress in genome science and a glimpse into its potential applications have spurred observers to predict that biology will be the foremost science of the 21st century. Technology and resources generated by the Human Genome Project and other genomics research are already having a major impact on research across the life sciences. The potential for commercial development of genomics research presents U.S. industry with a wealth of opportunities, and sales of DNA-based products and technologies in the biotechnology industry are projected to exceed $45 billion by 2009 (Consulting Resources Corporation Newsletter, Spring 1999).

Some current and potential applications of genome research include

  • molecular medicine
  • microbial genomics
  • risk assessment
  • bioarchaeology, anthropology, evolution, and human migration
  • DNA forensics (identification)
  • agriculture, livestock breeding, and bioprocessing

Molecular Medicine

  • improved diagnosis of disease
  • earlier detection of genetic predispositions to disease
  • rational drug design
  • gene therapy and control systems for drugs
  • pharmacogenomics "custom drugs"
Join now!

Technology and resources promoted by the Human Genome Project are starting to have profound impacts on biomedical research and promise to revolutionize the wider spectrum of biological research and clinical medicine. Increasingly detailed genome maps have aided researchers seeking genes associated with dozens of genetic conditions, including myotonic dystrophy, fragile X syndrome, neurofibromatosis types 1 and 2, inherited colon cancer, Alzheimer's disease, and familial breast cancer.

On the horizon is a new era of molecular medicine characterized less by treating symptoms and more by looking to the most fundamental causes of disease. Rapid and more specific diagnostic tests will ...

This is a preview of the whole essay