• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Write an account of how plants defend themselves against attack by pathogens and parasites.

Extracts from this document...

Introduction

Clare Johnson

Queens College

17th January 2004

Write an account of how plants defend themselves against attack by pathogens and parasites

Parasitic organisms such as bacteria, viruses, fungi, nematodes and insects have evolved ways to exploit the food, shelter and in the case of viruses, the replication machinery of plants as well as animals.  Animals have a circulating adaptive immune system to protect them from pathogens but plants, which have no such system have evolved other forms of anti-microbial defence.  In general, plants defend themselves against pathogens by a combination of two forms: structural characteristics that act as physical barriers and prevent the pathogen from entering the plant, and biochemical reactions which face the pathogen if it manages to breach the initial basal defenses and succeeds in penetrating the plant.  The structural characteristics are passive and non-specific where as the biochemical reactions are more host specific with the cells and tissues of the plant producing substances which are either toxic to the pathogen or create conditions that inhibit the growth of the pathogen.  Plant resistance can be described as the inability of a pathogen to grow or multiply and therefore spread in the plant it infects.

...read more.

Middle

  • Cork layer formation which prevents the pathogen or its toxins from spreading beyond the initial lesion and also prevent the pathogen from receiving any of the plant’s nutrients.  E.g. Cork cells in sweet potato reduce Rhizopus soft rot.
  • Rapid wound healing
  • Abscission layer formation which is when the plant excises a portion of itself in order to benefit the rest
  • Formation of tyloses which are overgrowths of the protoplasts of adjacent living parenchyma cells that extend into the xylem vessels.  They are formed in response to xylem invading pathogens.
  • Gum deposition in areas surrounding the most concentrated area of infection so that the pathogen becomes fully enclosed, isolated and eventually dies.
  • Lignification e.g. in root cells of infected sunflowers
  • Suberisation

Cellular defense structures are characterised by morphological changes occurring in the cell wall.

  • Callose thickening of the cell wall
  • Necrotic defense reaction achieved by the hypersensitive response.  This is when infection of a pathogen stimulates the nucleus of the cell to migrate towards the pathogen and disintegrates.  Meanwhile, brown granules form in the cytoplasm that spread and kill the invading organism.

Biochemical induced defense mechanisms produce toxic w

...read more.

Conclusion

Pythium and Phytophthora.  Tolerance to disease is the plant’s ability to produce a good crop despite being infected with a pathogen.  The plant achieves this by either lacking receptor sites for the pathogen or by being able to overcome the excretions of the pathogen.

In conclusion plants have many varied mechanisms of basal and induced resistance to parasites and pathogens and an important part of governing this resistance is by plant gene recognition of parasite genes.

References:

Agrious GN (1997)

Plant Pathology.

Academic Press. 4th Edition

Strange RN (2003)

Introduction to Plant Pathology

Wiley Press

Jackson and Taylor (1996)

Plant-Microbe Interactions: Life and Death at the Interface

The Plant Cell (1996) vol. 8 no. 10 pp1651 – 1668

De Wit P (2002)

Plant Biology: On Guard

Nature 416, 801 – 803

Odjakova and Hadjiivanova (2001)

The Complexity of Pathogen Defense in Plants

Plant Physiology 27 (1-2) 101-109

Dangl and Jones

Plant pathogens and integrated defense responses to infection

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Marked by a teacher

    Internal Resistance of a cell

    5 star(s)

    It meant that our experimental results were similar with theories and other prior experimental results thus indicating that the voltage should inversely proportional to the currents. From the results different readings (from the old and new) of the potential difference of the battery, this relied on the strength of the battery the stronger the battery the more reading required.

  2. Peer reviewed

    Solar cells

    3 star(s)

    Information on the website is to educate their clients of the products and future prospects the company are supplying. I found information from the website to be reliable and simple to understand. * How Stuff Works - http://science.howstuffworks.com/solar-cell1.htm. (Last Accessed: 08/04/10)

  1. Practical Project (2863/02): The Characteristics of a Shunt Wound Motor

    35.9 62.5 Here are the results for my repeat readings: F0/N I/A F1/N F2/N F3/N F4/N f/Hz Angular Velocity/ rad/s Applied Torque/Nm Power Input/W Efficiency of Motor/% 2 1.27 3.0 0.7 0.2 3.3 19.2 120.7 0.1 15.2 59.9 3 1.45 4.6 1.5 1.1 4.4 19.2 120.7 0.1 17.4 62.1 4

  2. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    If r was 2 ohms: In parallel the internal resistance is (1/r + 1/r). If r was 2ohms again then internal resistance would be 1ohms. This is half of the internal resistance of a series circuit with two cells. Diag series with two cells: The series with one cell will

  1. Designed to familiarise the author with the science national curriculum and in particular the ...

    The latter part reports upon the demands of the syllabus for the chosen topic area, with regard to knowledge, understanding and process skills. 2.1. Text Book Review Howe, L., 1997, Making It Work, Collins Educational, London. (KS 1 & 2)

  2. To investigate the factors which may affect the resistance of resistance putty.

    it to your starting point you must measure the same voltage, constraining the net change around the loop to be zero. Since voltages is electrical potential energy per unit charge, the voltage law can be seen to be a consequence of conservation of energy.

  1. Characteristics of Ohmic and Non Ohmic Conductors.

    This increases resistance. So whatever the amount of electrons provided, the current will decrease because the resistance has increased. In semiconductors the conductivity varies from the types of semiconductors. There are two types intrinsic and extrinsic semiconductors. This way there is no definite rule for these materials.

  2. Investigating how temperature affects the resistance in a wire

    Method: Input variable - The temperature in which the current passes through the wire (steel) is the input variable, because this is the variable that we control it is therefore the independent variable. Output variables - The voltage and the resistance (measured by the multimeters)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work