• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Test and evaluate a linear position sensor, and identify a possible use for this sensor in every day life.

Extracts from this document...


Outline For my experiment, I chose to test and evaluate a linear position sensor, and identify a possible use for this sensor in every day life. The experiment was done using a variety of apparatus, as seen in the list below, and was set up as shown in the diagram which follows. Apparatus: Retort stand with two clamps 100g, 20g, and 10g weights with holder Piece of string Sensor Precautions and Safety Safety was not a big issue when doing this experiment, as no harmful materials or apparatus were used. However, some precautions were taken. I made sure that I had enough space to carry out my experiment effectively, without worrying about knocking anything over; and when applying the weights to the sensor's mechanical contact, I made sure to this gently, and not drop the weights on, which could damage the sensor. Procedure After gathering and setting up my apparatus, the circuit was connected using a pair of connecting wires, a few crocodile clips, a power source, multimeter, and of course the position sensor. In this sensor, the exact circuit set up is not known, however there are two possibilities, both of which are shown in the two diagrams which follow. ...read more.


300 2.48 2.53 250 3.56 3.60 200 4.95 4.95 150 4.95 4.95 100 4.95 4.95 Analysis From the results you can clearly see that increasing the amount of mass applied to the mechanical contact, that is, the force applied to the mechanical contact, decreases the output P.D or voltage. As the mechanical contact experiences a force, it is pushed inwards, which consequently reduces the resistance of the sensor's variable resistor. This therefore, in accordance with V= IR, produces a smaller output P.D or voltage. This type of circuit is known as a potential divider circuit, where the sensor's resistance changes in response to the environment, (in this case an applied force) and so the proportion of the P.D across the sensor changes, which is used to give an output P.D or voltage. From the results we see that the maximum output P.D, is 4.95 V. This then means that at this point, the P.D across the fixed resistor (if first circuit) would be 0.05 V. During the experiment, some anomalies were experienced. When carrying out the experiment by starting with a maximum weight and decreasing gradually, there was unusually low output P.D readings recorded, for the 950g- 850g masses. ...read more.


This then also relates to the sensitivity of the sensor, as gradual minor changes may not be detected as that itself, but rather as a big jump when it reaches a certain point. Conclusion From this experiment we can see that using a linear position sensor in a potential divider circuit gives an output P.D or voltage, relative to the changes in resistance, in response to the environment. An increase in the force applied to the sensor's mechanical contact is associated with a decrease in the resistance of the sensor, and so the output P.D or voltage also decreases. In light of this experiment, and other background research of this sensor, I believe that a contact linear position sensor would be ideal for automotive applications. This is because there needs to be a constant track of the positions of the engine compartments, especially the movement of the engine's cylinders and pistons, and this sensor is protected against an engine compartment environment, (such as high temperatures), which can be harsh. It is also cost-effective, with a long endurance life, and can be 'tailored' and configured to fit the customer's needs or specifications. Here is a picture of the linear position sensor used in my experiment By: Scott de Silvia ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Systems and Control section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Systems and Control essays

  1. Building a mass balance to measure small weights (0g-100g) using a rotary potentiometer

    measured using this model but I have decided to use 0 to 100g for convenience. FITNESS FOR PURPOSE Resolution: Mass/g(10.00) Output/V +1.00 2.83 +2.00 2.86 Mass/g(30.00g) Output/V +1.00 3.34 +2.00 3.37 Basically, form the table above we can see that when 1.00g is added to known masses, the output is

  2. Building a Sensor to Measure Weight, using a Potential Divider and Wheatstone Bridge.

    To prepare for the experiment ahead I needed to find the starting resistance of both gauges and see how much their resistance change with strain. At this point I started the first run of the experiment. Predictions: As the weights are added the resistance increases in the top gauge and

  1. Getting On Line Without a Computer or Internet Access at Home

    Rockwood Memorial Library); Lodi PL; Long Branch Free PL; Long Hill Twp PL; Lyndhurst PL. M Madison Free PL; Mahwah PL; Manasquan PL; Manville PL; Maplewood Memorial Library; Margate City PL; Matawan-Aberdeen PL; Maywood PL; Mendham Free PL: Mendham Township PL; Mercer County Library; Metuchen PL; Middletown PL; Middletown Township

  2. The paper discusses the issues associated with the risks assessed between the organizations bidding ...

    The problem being considered in this situation is how to financially merge these organizations while gathering investors to ensure success in competition against other already established large organizations. This is where it is important to have long-term investors or stockholders to ensure the success in this venture.

  1. Water level sensor

    Safety My circuit is perfectly safe because before doing the research I checked every wire and found there was no problem. The power supply was the batteries which were 1.5V for each and I got 4. So the total voltage was (1.5*4)V which was less than 38V, so it was safe for humans.

  2. The aim of my project is to produce a working 'People Counter', which will ...

    It is just 7 LED's that have been combined into one case to make a convenient device for displaying numbers and some letters. Figure 1Common Cathode 7-Segment Display. http://www.iguanalabs.com/7segment.htm Figure 2 Pin out for 7-Segment Display http://www.iguanalabs.com/7segment.htm The following table shows how to form the numbers 0 to 9 and the letters A, b, C, d, E, and F.

  1. Design and build an electrical toy for children aged 5 years and over.

    However he called it Lexico. Also in Denmark, Ole Kirk Christiansen started his Lego toy company. Lego means "play well" in Danish (leg godt). Later he discovered that Lego also meant "to put together" in Latin. 1934 - Corgi starts to manufacture toy cars and other models.

  2. The aim of this investigation is to design, build and test a sensor.

    The resistance of the LDR is directly proportional to the resistance of the fixed resistor. Therefore, as the resistance of the LDR increases, the resistance of the fixed resistor decreases. This proportion of the potential difference can be found by Preliminary Experiment Prior to the experiment design stage, I conducted

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work