Earthquake

What is an earthquake?

An earthquake is a shaking of the ground caused by the sudden breaking and movement of large sections (tectonic plates) of the earth's rocky outermost crust. The edges of the tectonic plates are marked by faults (or fractures). Most earthquakes occur along the fault lines when the plates slide past each other or collide against each other.

What causes an earthquake?

There are two main causes of earthquakes.

Firstly, they can be linked to explosive volcanic eruptions; they are in fact very common in areas of volcanic activity where they either proceed or accompany eruptions.

Secondly, they can be triggered by Tectonic activity associated with plate margins and faults. The majority of earthquakes worldwide are of this type.

Terminology

An earthquake can be likened to the effect observed when a stone is thrown into water. After the stone hits the water a series of concentric waves will move outwards from the centre. The same events occur in an earthquake. There is a sudden movement within the crust or mantle, and concentric shock waves move out from that point. Geologists and Geographers call the origin of the earthquake the focus. Since this is often deep below the surface and difficult to map, the location of the earthquake is often referred to as the point on the Earth surface directly above the focus. This point is called the epicentre.

Earthquakes are three dimensional events, the waves move outwards from the focus, but can travel in both the horizontal and vertical plains. This produces three different types of waves which have their own distinct characteristics and can only move through certain layers within the Earth. Let’s take a look at these three forms of shock waves. They are primary waves, secondary waves and surface waves.


Tectonic earthquakes

Tectonic earthquakes are triggered when the crust becomes subjected to strain, and eventually moves. The theory of plate tectonics explains how the crust of the Earth is made of several plates, large areas of crust which float on the Mantle. Since these plates are free to slowly move, they can either drift towards each other, away from each other or slide past each other. Many of the earthquakes which we feel are located in the areas where plates collide or try to slide past each other.

The process which explains these earthquakes, known as can be demonstrated with a green twig or branch. Holding both ends, the twig can be slowly bent. As it is bent, energy is built up within it. A point will be reached where the twig suddenly snaps. At this moment the energy within the twig has exceeded the Elastic Limit of the twig. As it snaps the energy is released, causing the twig to vibrate and to produce sound waves.

Perhaps the most famous example of plates sliding past each other is the San Andreas Fault in California. Here, two plates, the Pacific Plate and the North American Plate, are both moving in a roughly north-westerly direction, but one is moving faster than the other. The San Francisco area is subjected to hundreds of small earthquakes every year as the two plates grind against each other. Occasionally, as in 1989, a much larger movement occurs, triggering a far more violent 'quake'.

Major earthquakes are sometimes preceded by a period of changed activity. This might take the form of more frequent minor shocks as the rocks begin to move, called foreshocks , or a period of less frequent shocks as the two rock masses temporarily 'stick' and become locked together. Detailed surveys in San Francisco have shown that railway lines, fences and other longitudinal features very slowly become deformed as the pressure builds up in the rocks, and then become noticeably offset when a movement occurs along the fault. Following the main shock, there may be further movements, called aftershocks, which occur as the rock masses 'settle down' in their new positions. Such aftershocks cause problems for rescue services, bringing down buildings already weakened by the main earthquake.


How is the strength of an earthquake measured?

Join now!

Earthquakes can be measured in several ways, two of which are intensity and magnitude. Intensity measures damage to the surface and the effects on humans. The scale used to measure intensity is called the Modified Mercalli Intensity Scale. Magnitude does not depend on population and effects to ground structures, but rather on wave amplitude and distance from the epicentre. This measure uses formulas and seismograph information to determine the magnitude.

The scale used to measure magnitude is the Richter scale. Although each earthquake has a unique magnitude, its effects will vary greatly according to distance, ground conditions, 
 standards, and other factors. ...

This is a preview of the whole essay