• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9

GCSE Geography Coursework: Strand 4 - Interpertation of Data

Extracts from this document...

Introduction

This is the Data Interpretation section of the coursework folder for the geographical investigation conducted on the River Calder around Garstang; based on the following hypothesis - 'Does the River Calder fit the Bradshaw Model.' The Bradshaw model is in figure 1. These are the locations which were investigated: * #1- approximately 4km from source. Grid reference 548 487. * #2- approximately 5.2km from source. On Grid reference 539 482. * #3 - On Calder Vale; approximately 8.3km from source. Grid Reference 533 482. * #4 - Sandholme Mill; approximately 11.4km from source, grid reference 517 434. * #5- Catterall playing fields; approximately 14.3km form source, grid reference 494 433. These are the factors which were measured and are going to be explained: * Channel Width * Channel Depth * Water velocity * Discharge * Gradient * Average bed-load size * Bed load roundness. Analysis of each factor in-respect to the River Calder's attributes: (1) Channel Width: According to the Bradshaw Model, the channel width is expected to increase moving downstream from the source. Site Width in meters Site 1 6.1 Site 2 2.7 Site 3 5.8 Site 4 5.9 Site 5 6.7 There is an abnormal decrease of 3.4m in the channel width between sites 2 and 3; approximately 7KM from source. This anomaly is due to the abstraction of water from the Calder Intake to the Barnacre and Grizedale Lea reservoirs, grid-reference 5448. A reduce in water will make the channel width narrower. This is because less (lateral) ...read more.

Middle

The river slows down to adjust to this attribute. There is however an alternative possibility. At site 4 we measured inside the inner-bend of the meander; which flows faster than the outer-bend. (4) Gradient: According to the Bradshaw model the river's gradient is expected to decrease moving downstream from the source. Site Gradient (degrees) Site 1 3.2 Site 2 2.3 Site 3 1.8 Site 4 1 Site 5 0.7 The gradient decreases chronologically as one goes downstream from source - from 3.2o to 0.7o; which fits the Bradshaw Model. The gradient of the river decreases because it is reaching flat, smooth, laminar land which does not contain boulders, which the upper-course has. Gradient also directly helps to increase the velocity. This is because an increase in steepness allows a faster flow of water, thence faster turbulent erosion, which breaks boulders by Hydraulic action. (5) Discharge: According to the Bradshaw Model, the Discharge will increase heavily moving downstream from source. In the Discharge formula, the Cross-sectional Area and the velocity are products; thus as the cross-sectional area or the velocity decrease, so will the Discharge. Site Discharge (cumecs) Site 1 0.811 Site 2 0.009 Site 3 0.086 Site 4 0.267 Site 5 0.394 There is a significant decrease of 0.802 cumecs in the discharge between sites 1 and 2. This decrease is influenced by the decrease in the cross-sectional area and the velocity. ...read more.

Conclusion

This meant that the angular rocks were moved by traction and, because of the heavy gush of the water, were eroded by hydraulic-action; this process is responsible for decreasing the angular rocks between sites 1 and 2 from 55% to 48%. The erosion between these two sites is slow because water has been abstracted to the Barnacre and Grizedale Lea reservoirs. From Sites 2 to 3, the bed-load roundness changes significantly, this is due to surplus water being re-added to the River Calder. The amount of angular rocks can now decrease because they have already been broadened by Hyraulic-action; they can now smooth by rubbing against the river-bed (abrasion). Between Sites 3 to 4, there is a significant increase in the number of rounded rocks. This is because the River Calder's 34 tributaries are adding water. Using this water and the moderate velocity (0.24m/sec), the river can make the sub-angular, middle sized particles, move by Saltation which will make them rounder. This is why the percentage of rounded rocks has increased by 32. However this sight was ambiguous since it was subjective to differentiate between the different types of rocks. Between Sites 4 to 5, River Calder and River Wyre confluence, adding on huge amounts of additional water. The surface-area in Site 5 is 2.073m2 this means that land will be bigger and smoother; thus there will be less friction. In spite of this, there were still, according to my peers, angular rocks. ?? ?? ?? ?? Riyadh Abdulla Data Interpretation Instructor: Mr Walker 1 GCSE Geography Spec.B Candidate Number:- 4185 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Physical Geography section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Physical Geography essays

  1. Marked by a teacher

    Geography Coursework

    3 star(s)

    Tourists I then worked out how much tourist's that would come up to per year and came to a final answer of 50,000 Tourists per year. This gives me the idea that blue pool is quite a popular Tourist resort so far in this investigation.

  2. Debden Brook Rivers Coursework Data Collection Table

    The final step was for the third person. They had to once again take measurements. Except this time the third person had to use the Clinometer to measure the readings off of the Clinometer, the person had to hold the Clinometer against the ranging rod, and decide at a point on the ranging rod that they were going to find on the opposite ranging rod.

  1. Cliff erosion in East Sussex - the processes, problems and solutions.

    This could lead to partitions from local residents about the change, they could be for either argument- yes "we want it because we are under threat" or no "we don't want it because it will spoil the beautiful scenery". The latter generally will be received from all environmental groups, such as Greenpeace and Save the Planet.

  2. Swanage Geography Coursework

    understandable because on week days and weekends tourists would want to visit shops however the only things delaying their shopping time is Parking. If Tourist's have more parking then more Tourists will be able to shop thereby giving more profit towards swanage.

  1. Geography river study coursework - Why do channel characteristics vary downstream at a number ...

    The difference in width between site 1 and site 8 is only 6.4 m. I would expect however that further down the river, towards the mouth, the river would get much wider. 2."The bedload shape( smoothness and roundness) should increase with distance downstream" 3."The cross-sectional area of the river channel increases with distance downstream."

  2. rivers coursework

    We had to investigate how a river changes downstream and this helped me to reflect upon a number of river processes and their effect on the environment. My hypothesis' account for many of the key river features like the depth, velocity, width etc, making it all possible of investigating at Loughton Brook.

  1. Evaluations of River Coursework

    My evaluation for measuring cross-section area is shown on page ... . This shows all of the problems with my methods, and how they could have been fixed, and they all are applicable here. The second measurement is wetted perimeter.

  2. Lulworth Cove Coursework

    you can see in Figure 8 over the 5 minute duration, women have had the highest number going into the Heritage Centre.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work