• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  • Level: GCSE
  • Subject: Maths
  • Word count: 1849

3 step stair investigation

Extracts from this document...

Introduction

Mathematics Coursework

3 Step Stair Investigation

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

N+20

N+10

N+11

N

N+1

N+2

image15.pngimage00.pngimage01.png

image26.png

82

83

84

85

86

87

88

89

90

73

74

75

76

77

78

79

80

81

64

65

66

67

68

69

70

71

72

55

56

57

58

59

60

61

62

63

46

47

48

49

50

51

52

53

54

37

38

39

40

41

42

43

44

45

28

29

30

31

32

33

34

35

36

19

20

21

22

23

24

25

26

27

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

9

image37.png

N+18

N+9

N+10

N

N+1

N+2

image48.png

image59.png

N+16

N+8

N+9

N

N+1

N+2

17

18

19

9

10

11

1

2

3

image66.png

image73.png

N+14

N+7

N+8

N

N+1

N+2

15

16

17

8

9

10

1

2

3

image83.png

image02.png

N+12

N+6

N+7

N

N+1

N+2

13

14

15

7

8

9

1

2

3

I can already observe a pattern therefore I should be able to write a final formula for a 3 by 3 step in any size grid so far the answers I have are:

image06.png

10 by 10→ 6N + 44

9   by 9  → 6N + 40

8   by 8  → 6N + 36

7   by 7  → 6N + 32

6   by 6  → 6N + 28

image07.pngimage08.png

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

image09.png

N+30

N+20

N+21

N+10

N+11

N+12

N

N+1

N+2

N+3

image10.png

82

83

84

85

86

87

88

89

90

73

74

75

76

77

78

79

80

81

64

65

66

67

68

69

70

71

72

55

56

57

58

59

60

61

62

63

46

47

48

49

50

51

52

53

54

37

38

39

40

41

42

43

44

45

28

29

30

31

32

33

34

35

36

19

20

21

22

23

24

25

26

27

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

9

image11.png

N+27

N+18

N+19

N+9

N+10

N+11

N

N+1

N+2

N+3

image12.png

image13.png

N+24

N+16

N+17

N+8

N+9

N+10

N

N+1

N+2

N+3

25

26

27

28        

17

18

19

20

9

10

11

12

1

2

3

4

image16.pngimage14.png

N+21

N+14

N+15

N+7

N+8

N+9

N

N+1

N+2

N+3

22

23

24

25        

15

16

17

18

8

9

10

11

1

2

3

4

There is an obvious relationship between the answers I have got for different size grids therefore I should now attempt to write a formula for a 4 by 4 step in any size grid.

image17.png

10 by 10

...read more.

Middle

1

2

3

4

image19.png

image20.png

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

image21.png

N+40

N+30

N+31

N+20

N+21

N+22

N+10

N+11

N+12

N+13

N

N+1

N+2

N+3

N+4

image22.png

82

83

84

85

86

87

88

89

90

73

74

75

76

77

78

79

80

81

64

65

66

67

68

69

70

71

72

55

56

57

58

59

60

61

62

63

46

47

48

49

50

51

52

53

54

37

38

39

40

41

42

43

44

45

28

29

30

31

32

33

34

35

36

19

20

21

22

23

24

25

26

27

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

9

image23.png

N+36

N+27

N+28

N+18

N+19

N+20

N+9

N+10

N+11

N+12

N

N+1

N+2

N+3

N+4

image24.png

image25.png

N+32

N+24

N+25

N+16

N+17

N+18

N+8

N+9

N+10

N+11

N

N+1

N+2

N+3

N+4

image27.png

33

34

35

36

37

25

26

27

28

29

17

18

19

20

21

9

10

11

12

13

1

2

3

4

5

image28.png

image29.png

N+28

N+21

N+22

N+14

N+15

N+16

N+7

N+8

N+9

N+10

N

N+1

N+2

N+3

N+4

29

30

31

32

33

22

23

24

25

26

15

16

17

19

20

8

9

10

11

12

1

2

3

4

5

image31.pngimage30.png

image32.png

There is an obvious relationship between the answers I have got again for different size grids therefore I should now attempt to write a formula for a 5 by 5 step in any size grid.image33.png

10 by 10 15N + 220

9   by 9   15N + 200

8   by 8   15N + 180

7   by 7   15N + 160

6   by 6   15N +?

? Should equal 140. To prove my formula I will check it works in a 6 by 6 grid.

image34.png

N+24

N+18

N+19

N+12

N+13

...read more.

Conclusion


(∑Tn < X) (y+1)

 This is the final formula for the second part of the investigation I already have the first so if I were to write out the complete formula it would be.

TnX+ (∑Tn < TnX)(y+1)  N = the of the shape and X = the corner number                                                       Y= size of the grid  (But there is another way)

image75.png

By using the cubic formula I will be able to calculate the relationship between these numbers in red.

1 step stair = 1N   + 0(y+1)

2 step stair = 3N   + 1(y+1)

3 step stair = 6N   + 4(y+1)

4 step stair = 10N + 10 (y+1)

5 step stair = 15N + 20(y+1)

6 step stair = 21N + 35(y+1)

an3 +bn2 +cn+ d

0                        1                                4                                10

             1                                3                                6

                        2                                3

                                        1

a+b+c+d       8a+4b+2c+d              27a+9b+3c+d            64a+16b+4c+d

        0                     1                                4                                  10

           7a+3b+c                 19a+5b+c                   37a+7b+c

                    1                            3                                 6

                            12a+2b                      18a+2b

  1. 3

                6aimage76.png

                 1

image78.pngimage77.png

a= 1/6

b= 0image79.png

c= -1/6

d= 0

image80.pngimage80.png

image81.png

TnX +                                   (y+1)

I now have a final formula which hopefully works all I now need to do is test it. To begin with I will imagine I have a 3 by 3 step stair in a 10 by 10 grid. I know the answer for the formula should be 6x +44.

T3X= 6x

image82.png

                                             24

                        =     ----- =   4

                                              6

6x+ 4 (10+1) = 6x + 44

If the corner number is one then the answer would be 50 which is the correct answer.

1+2+3+11+12+21=50

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

74

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

image84.png

image85.png

image86.png

image87.png

image05.pngimage04.pngimage88.pngimage89.pngimage90.pngimage91.pngimage92.pngimage93.pngimage03.png

Roy Vivasi                          Mr Clear                      

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grids Investigation Coursework

    these numbers together, then multiplying the product by 10, I get the difference. I can put this into an algebraic formula, like so: D = 10 (m - 1) (n - 1) This also fits with my formula for squares as, in squares the length and the width are equal, (m - 1)

  2. Number Grid Investigation.

    z ( n - 1 ) So, if for example we were given a 7 X 2 square taken from a 8 wide grid the calculation would be: 8(7-1) For any random square inside any random width grid. z ( n - 1 )( d - 1 )

  1. Step-stair Investigation.

    formula 15X+20g+20=S, I worked out the total of the numbers inside the turquoise area of the 5-step stair: (15*1)+(20*5)+20=15+100+20=135 I then added up all the numbers in the 5-step stair to see if it gave the same number: 1+2+3+4+5+6+7+8+9+11+12+13+16+17+21=135 These two diagrams prove that 15X+20g+20=S on all sized grids.

  2. For other 3-step stairs, investigate the relationship between the stair total and the position ...

    and so on Using the algebra equation and adding the values we get -110 If we closely examine the results from the 4-step stairs from the 3 numbered Grid Square, i.e. 10x10, 11x11 and 12x12 we can see that the constant value [10] We can then complete the rest of

  1. Number Grid Investigation

    As it doesn't really matter which is the length or the width. 26 27 28 36 37 38 26 x 38 = 988 Difference = 20 28 x 36 = 1008 I will now prove that the difference in a 3 x 2 rectangle is 20, I will also be

  2. Mathematical Coursework: 3-step stairs

    70 51 52 53 54 55 56 57 58 59 60 41 42 43 44 45 46 47 48 49 50 31 32 33 34 35 36 37 38 39 40 21 22 23 24 25 26 27 28 29 30 11 12 13 14 15 16 17 18 19

  1. number grid investigation]

    Because the second answer has +10 at the end, it demonstrates that no matter what number is chosen to begin with (n), a difference of 10 will always be present. 3 x 3 Grid Prediction I believe that this difference of 40 should be expected to remain constant for all 3x3 number boxes.

  2. Algebra Investigation - Grid Square and Cube Relationships

    n n+1 n+10 n+11 n n+1 n+2 n+10 n+11 n+12 n+20 n+21 n+22 n n+1 n+2 n+3 n+10 n+11 n+12 n+13 n+20 n+21 n+22 n+23 n+30 n+31 n+32 n+33 n n+1 n+2 n+3 n+4 n+10 n+11 n+12 n+13 n+14 n+20 n+21 n+22 n+23 n+24 n+30 n+31 n+32 n+33 n+34 n+40

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work