• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

A box is drawn around four numbers. Find the product of the top left number and the bottom right number in this box. Do the same with the top right and bottom left num

Extracts from this document...

Introduction

Assignment A box is drawn around four numbers. Find the product of the top left number and the bottom right number in this box. Do the same with the top right and bottom left numbers. Calculate the difference between these products. Investigate further 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 The product difference from the two by two square is ten Part of the investigation is to multiply the top left hand corner number with the bottom right hand corner number. ...read more.

Middle

To investigate this theory I am going to increase the size of the square within the grid. Firstly I am going to conduct the same test on a 3x3 grid 67 68 69 77 78 79 87 88 89 67 x 89 = 5963 69 x 87 = 6003 6003 - 5963 = 40 From this and my previous finding I can state that all 3 x 3 squares with a ten by ten grid have a product difference of 40. The next stage of my project was to expand the squares yet again. This time to 4x4. 34 35 36 37 44 45 46 47 54 55 56 57 64 65 66 67 7 8 9 10 17 18 19 20 27 28 29 30 37 38 39 40 37 x 10 = 370 64 x 37 = 2368 40 x 7 = 280 67 x 34 = 2278 = 90 = 90 From this I have concluded that a 4 x 4 square will always have a product outcome of 90. ...read more.

Conclusion

28 19 x 28 = 532 20 x 27 = 540 = product difference = 8 To test for accuracy I will conduct this again. 46 47 54 55 46 x 55 = 2530 47 x 54 = 2538 = product difference = 8 3x3 square 17 18 19 27 28 29 37 38 39 17 x 39 = 663 19 x 37 = 703 product difference of 40 n n+2 n+16 n+18 (n+2(n+16) - n(n+18) N2+ 18n+40 - n�-18n = 40 Difference on a 2x2= 8 =1x8 = n�x8 Difference on a 3x3= 40 =4x8 = n�x8 = N( -1) 10 x 10 square = N (-1) 8x8 square = N (-1) Conclusion From my investigation I have found out that the same formula can be used to find diagonal squares within a larger grid. This formula can stay the same even with varying grid and square sizes. I have used algebraic equations to visually represent my findings and calculations so that the formulas and methods are clearly shown and worked out as I went through. ?? ?? ?? ?? Richard Aldridge ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Marked by a teacher

    Number grids. In this investigation I have been attempting to work out a ...

    4 star(s)

    61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 30x40=1200 Difference=9 39x31=1209 The difference equals 9. So what would happen if you tried the same thing with a 3x3 box?

  2. Investigation of diagonal difference.

    51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 90 100

  1. Open Box Problem.

    48cm by 48cm Square I will now be investigating a 48cm by 48cm square. This is the last square that I will be investigating. I will use the formula L/6 again to predict the cut of x, which will give this open box its maximum volume: Length/width of square 48

  2. Algebra Investigation - Grid Square and Cube Relationships

    Increment Size: 3 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 Experimental number box: Algebraic box: n n+3(w-1) n+3g(h-1) n+3(w-1)+3g(h-1) Simplifies to: n n+3w-3 n+3gh-3g n+3w+3gh-3g-3 Stage A: Top left number x Bottom right number = n(n+3w+3gh-3g-3)

  1. GCSE Maths coursework - Cross Numbers

    28 29 30 31 32 33 34 35 36 37 38 39 40 If X=10 and g=4 X-g (X-1) X (X+1) X+g The number above x is X-g because 10-4=6 The number below x is X+g because 10+4=14 . The number to the left is (X-1)

  2. Maths - number grid

    These will be randomly selected from the 12x12 number grid. 12x42 - 6x48 f 504 -288 Difference = 216 59x89 - 53x95 5251 - 5035 Difference =216 I feel my defined difference of 216 for any 7x4 rectangle investigated in a 12x12 number grid is accurate, I will use algebra to prove this is true.

  1. Mathematics - Number Stairs

    13 Prediction / Test: 3 x 20 + 13 = 73 32 20 21 20 + 21 + 32 = 73 Algebraic Proof: n+12 n n+1 n + (n+1) + (n+12) = 3n + 13 8 9 10 11 12 1 2 T = 3n + 9 T = 3n

  2. How can visual illusions illustrate top down processes in perception? Contrast this with a ...

    By perceiving the objects in this way A becomes further away than B. However given that the lines are of the same size by applying the principle of size constancy it can be concluded that A is perceived as being longer than B.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work