• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 3003

Acoustics Assignment

Extracts from this document...

Introduction

Acoustics Assignment Assignment Brief To choose a room and analyse the construction materials and subsequent surface areas of that room, and using the given formula, show an understanding in the calculations involved in solving absorption coefficients, reverb times and standing waves of any given space. Introducing Acoustics Before any formula can be applied, or calculations analysed, a firm understanding must be grasped of the main components involved in this assignment, namely: Standing waves Nodes / Anti-nodes Fundamental frequency Reverberation time Absorption Absorption coefficients Frequency Wallace Sabine Let us consider each heading Standing Waves The modes of vibration associated with resonance in extended objects like strings and air columns have characteristic patterns called standing waves. These standing wave modes arise from the combination of reflection and interference such that the reflected waves interfere constructively with the incident waves. An important part of the condition for this constructive interference is the fact that the waves change phase upon reflection from a fixed end. Because the observed wave pattern is characterised by points, which appear to be standing still, the pattern is often called a 'standing wave pattern.' Nodes / Anti-nodes One characteristic of every standing wave pattern is that there are points along the medium, which appear to be standing still. These points, sometimes described as points of no displacement, are referred to as nodes. There are other points along the medium, which undergo vibrations between a large positive and a large negative displacement. These are the points which undergo the maximum displacement during each vibrational cycle of the standing wave. ...read more.

Middle

0.7 0.8 0.6 0.4 Acoustic tile, suspended 0.5 0.7 0.6 0.7 0.7 0.5 Brick 0.03 0.03 0.03 0.04 0.05 0.07 Brick and plaster 0.41 0.45 0.48 0.56 0.58 0.60 Carpet, 3mm pile height 0.05 0.05 0.1 0.2 0.3 0.4 Chair, small fabric 1.5 3.5 4 4.5 4.75 4.5 Concrete block, painted 0.1 0.05 0.06 0.07 0.1 0.1 Concrete block, unpainted 0.4 0.4 0.3 0.3 0.4 0.3 Concrete, poured 0.01 0.01 0.02 0.02 0.02 0.03 Door, wooden 0.17 0.21 0.26 0.29 0.31 0.34 Draperies, medium velour 0.07 0.3 0.5 0.7 0.7 0.6 Glass 4mm 0.20 0.22 0.28 0.34 0.34 0.29 Gypsum wallboard, 1/2" on studs 0.3 0.1 0.05 0.04 0.07 0.1 Heavy carpet on concrete 0.02 0.06 0.15 0.4 0.6 0.6 Heavy carpet on felt backing 0.1 0.3 0.4 0.5 0.6 0.7 Heavy plate glass 0.2 0.06 0.04 0.03 0.02 0.02 Ordinary plaster, on lath 0.2 0.15 0.1 0.05 0.04 0.05 Ordinary window glass 0.3 0.2 0.2 0.1 0.07 0.04 Platform floor, wooden 0.4 0.3 0.2 0.2 0.15 0.1 Plywood sheet, 1/4" on studs 0.6 0.3 0.1 0.1 0.1 0.1 Person, adult 2.5 3.5 4.2 4.6 5 5 Recliner, leather 3 3.75 3.5 3 2.5 2 Stud wall 0.25 0.32 0.34 0.47 0.39 0.50 Timber floor 0.18 0.25 0.37 0.39 0.45 0.45 Upholstered seating, unoccupied 0.2 0.4 0.6 0.7 0.6 0.6 Upholstered seating, occupied 0.4 0.6 0.8 0.9 0.9 0.9 Vinyl tile on concrete 0.02 0.03 0.03 0.03 0.03 0.02 Wooden seating, unoccupied 0.02 0.03 0.03 0.06 0.06 0.05 Wooden pews, occupied 0.4 0.4 0.7 0.7 0.8 0.7 The Spare Room 2.74 cm 2.70 cm 3.07 cm 1.91 cm Door 1.72 cm Window .81 cm .79 cm Consider a room with floor (and ceiling) ...read more.

Conclusion

= 0.177944381 Tr = 0.17 seconds Analysis of results After carefully analysing the room's absorption coefficients and reverb times, the conclusion was that the room, due to the absorbing properties of the walls, ceiling and floor, suffered from a reduced reverberation time. This causes the sound within the room to appear dull, flat and without much bass. Corrective procedures To enhance the deficient bass, and add a warmer, richer element to the sound of the room, thick velvet curtains could be added to the windows. This would absorb the higher frequencies and reflect the lower end of the scale. The timber floor could be covered with a luxuriously deep pile carpet, again this would soak up the higher frequencies and reflect the lower ones. Acoustic wall coverings, designed for use on most vertical surfaces, could also be considered. These products are predominantly made of man-made polyester and olefin fibres, and are tested for a special sound attenuation rating known as a Noise Reduction Coefficient (NCR) rating. This rating indicates the amount of sound absorbed into the wall. The higher the number, the more noise absorption at the specified frequency; in this case, we would be looking to absorb the high end and reflect the bass. The ceiling could be covered with acoustically reflective tiles, specially designed to reflect a particular frequency whilst absorbing unwanted ones. Furniture also plays an important part in the room's overall acoustics. Bearing in mind the sound field will not be perfectly diffused; it would be advantageous to uniformly place seating, rather than placing items randomly throughout the room. ?? ?? ?? ?? 11 2 Lee Foster Lee Foster ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Geography Investigation: Residential Areas

    I have found that using Standard Deviation I have been able to find that Cyprus Road would achieve a high four on the average area rating and it did. Now if I wanted to find the next street all I would have to do would be to put the average

  2. Regeneration has had a positive impact on the Sutton Harbour area - its environment, ...

    Count I carried out a pedestrian count so that I could determine how many people were visiting certain areas around the Barbican and Coxside areas. My hypothesis questions whether the regeneration had had a positive impact on the area. Therefore the pedestrian count allowed me to compare where the more

  1. Maths Coursework - Cables: For this assignment I have been requested to study a ...

    useful; throughout it the company can work out exactly how much thread they need for any 'square' size by simply replacing (n) with the number of the number they want in the square sequence. From the above information we can see that it not an easy job to actually find

  2. Investigation of Open Ended Tubes.

    If two sides should be the same size for optimum area, we can calculate the optimum Length of the third one. First some limitations: 2a+b = 320 a+b>a 2a>b h� = a�-(a-x)� = (320-2a)�-x� this again shows that a>h and 320-2a>h.

  1. Impacts of tourism Positive and Negative effects in Castleton

    Point 3 Point 3 is situated in the market place of the village next to the village green. There was an average amount of litter in this area considering the village's fish and chips shop is in the area. The noise level in the the area was quite quiet because

  2. HL type 1 portfolio on the koch snowflake

    implies that the conjecture for is: "The conjecture suggests that as we move right along the x-axis (0 onwards), i.e. as the value of 'n' increases by 1 unit, the corresponding value on the y-axis ( 3 onwards)

  1. Quality of life in Leicester.

    There were no nice views or trees to look out onto, as there was a lot of littering. These areas soon became very run down and many people left. This then caused problems of no money coming into the local authorities so they then rented out many of the flats to the local university.

  2. What affect does the surface area of a beet have on the rate of ...

    Contrast the solutions formed and note the solution with the highest rate of anthocyanin therefore indicating the highest rate of pigment leakage (i.e look at the solutions formed and note the "redness" of each solution by placing a white sheet of paper to aid you in telling the difference in colors)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work