• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  • Level: GCSE
  • Subject: Maths
  • Word count: 1078

Borders diagram

Extracts from this document...

Introduction

Mathematic Coursework

Hossay Rahimy 11 Fisher

Introduction

In this coursework I am going to investigate to see how many squares would be needed to make any cross-shape built up in this way.

image00.png

▬►                                     ▬►                                                    

We can see that number of black is the total number of the pattern before.

A

Pattern

Black

White

 Total

1

1

4

5

2

5

8

13

3

13

12

25

4

25

16

41

5

41

20

61

6

61

24

85

White

To get the formula for the a quadratic sequence is: An²+ B+ C

I have to find a formula for the nth term of this number sequence:

4, 8, 12, 16, 24,

White

4

8

12

16

20

24

Difference

4

4

4

N term

4N

The first difference is a constant for the white pattern, so the nth term is:  4N

Black

I have to find a formula for the nth term of this sequence:

1, 5, 13, 25, 41, 61,

 Black:                                                                 1       5       13       25      41      61

                                                                                 \  /     \  /     \   /    \    /    \   /

First differences are not the same:             4        8        12       16       20

                                                                                        \   /    \    /    \    /   \    /

Second differences are the same:                        4         4       4         4

Formulas that contain n²: If the second difference is a constant,                   the formula for the nth term contains n². The number in front of n² is

...read more.

Middle

-1

-3

-5

-7

-9

-11

\              /  \             /      \         /       \        /        \           /

-2                   -2                -2                 -2                   -2

The formula for the *Rest of sequence* is -2n+1

(Since it is multiples of -2, plus 1)

The final formula is 2n²-2n+1

I will check the formula by finding term number 7.

n=7, 2n² -2n+1= 85

85 should fit the difference pattern at the start of the sequence.

Total

I have to find a formula for the nth term of this number sequence:

5, 13, 25, 41, 61, 85

Total                                                                  5      13       25       41      61       85

                                                                                \  /     \    /     \   /     \  /    \    /              

First differences are not the same:             8          12       16       20      24

                                                                                       \  /       \   /    \   /    \    /

Second differences are the same:                       4           4        4        4

Formulas that contain n²: If the second difference is a constant,                   the formula for the nth term contains n². The number in front of n² is half the constant difference.

The constant difference is 4.

The number in front of n² is half of 4, which is 2.

The first part of the formula is therefore 2n².

Line 1:    the number of each term

Line 2:    the number is the sequence

Line 3:     2n² worked out from the number of each term

Line 4:    the rest of sequence comes from taking 2n² away from the numbers in the sequence (line 2 take away line 3)

1.number of term(n)

 1

2

3

4

5

6

2.sequence

5

13

25

41

61

85

3. 2n²

2

8

18

32

50

72

4.rest of sequence

3

5

7

9

11

13

\              /  \             /      \         /       \        /        \           /

2                  2                2                 2                   2

...read more.

Conclusion

p.s. 4/3 means  4 over 3

1. number of n term

1

2

3

4

5

2.Sequence

7

25

63

129

231

3.  4n³/3

4/3

32/3

108/3

256/3

500/3

4. rest of sequence

21-4/3

75-32/3

189-108/3

387-256/3

693-500/3

           \             /          \               /    \               /             \        /

              26/3                   38/3            50/3                    62/3

                       \               /           \            /    \                   /

                            4                            4                 4

Formulas that contain n²: If the second difference is a constant,                   the formula for the nth term contains n². The number in front of n² is half the constant difference.

The constant difference is 4.

The number in front of n² is half of 4, which is 2.

The first part of the formula is therefore 2n².

The rest of sequence of a cubic formula is the sequence for the quadratic formula, so the sequences are:

5 2/3, 14 1/3, 27, 43 2/3, 64 1/3

1.numberof tern (n)

1

2

3

4

5

2. sequence

5 2/3

14 1/3

27

43 2/3

64 1/3

3.2n²

2

8

18

32

50

4. rest of sequence

3 2/3

6 1/3

9

11 2/3

14 1/3

                               \                  /             \           /        \         /             \                  /

                                     2 2/3                        2 2/3             2 2/3                2 2/3

The formula for the *Rest of sequence* is 2 2/3n+1

(Since it is multiples of 2 2/3, plus 1)

The final formula is 4n³/3+2n²+8n/3+1

I will check the formula by finding term number 5.

n=5, 4/3n³+6/3n² +8/3n+1= 231

231 fit in pattern of the sequence.

        -  -

...read more.

This student written piece of work is one of many that can be found in our GCSE Open Box Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Open Box Problem essays

  1. HL type 1 portfolio - sequences and series

    Since we get a constant value of at the third attempt, we undertake Cubic Regression.(using a TI 84plus calculator) We deduce, Substituting the values of a, b & c in the above formula, 'n' in place of 'x' and '' in place of 'y', we get, Therefore, our conjecture ()

  2. In this investigation, I will explore how magic squares work.

    4, 5, 6 Magic Total: 18 Magic Number: 6 Middle Number of square: 2 Magic numbers of 21, 25, 30, 150 and 0 Magic number: 21 Magic number: 25 Magic number: 30 Magic number: 150 Magic number: 0 Magic total: 63 Magic total: 73 Magic total: 90 Magic total: 450

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work