• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An investigation into the relationship between stairs size and the value.

Extracts from this document...

Introduction

An investigation into the relationship between stairs size

...read more.

Middle

3

4

5

6

7

8

9

10

1st stair: 25 + 26 + 27 + 35 + 36 + 45 = 194

If we represent this 1st stair in the form of n then an algebraic formula can be created.

image00.png

n+(n+1)+(n+2)+(n+10)+(n+11)+(n+20)

= 6n+44

image01.png

Therefore in terms of x and y, with x being the base number and y being the total of the stair the formula would be:

y=6x+44

No matter what x is replaced by the formula (6x+44) is always applicable.

25 + 26 + 27 + 35 + 36 + 45 image07.png

= 194

(6x25) + 44 = 194

image08.png

26 + 27 + 28 + 36 + 37 + 46

= 200

(6x26) + 44 = 200

These stairs are only one along from each other on the same line.  This formula applies to any 3 levelled stairs anywhere on the grid no matter where it is.

image09.png

45 + 46 + 47 + 55 + 56 + 65

= 314

(6x45) + 44 = 314

78 + 79 + 80 + 88 + 89 + 98image10.png

= 512

(6x78) + 44 = 512

This formula however must be changed for a stair with a higher number of levels.  If the number of levels exceeds 3 then the formula (6x + 44) is incorrect.

...read more.

Conclusion

The sequence of the triangular numbers comes from the natural numbers (and zero), if you always add the next number:

1 
1+2=
3 
(1+2)+3=
6 
(1+2+3)+4=
10 
(1+2+3+4)+5=
15 
...image14.png

This diagram is identical to the number squares in the grid with the exception that they are not numbered and the diagram shows that the number of x in the formula is directly related to the number of boxes in the stair.  For example (6x+44) is the 3 level stair formula and in the diagram above there are six boxes in the 3 level stair.

The increase in x that is shown in the table shows that as the number of levels increase so does the amount of x.  The increase is by the same number.

e.g. when there are 3 levels the increase in x is by 3.  this shows that there is a sequence in the formula

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Mathematics - Number Stairs

    13 Prediction / Test: 3 x 20 + 13 = 73 32 20 21 20 + 21 + 32 = 73 Algebraic Proof: n+12 n n+1 n + (n+1) + (n+12) = 3n + 13 8 9 10 11 12 1 2 T = 3n + 9 T = 3n

  2. Mathematical Coursework: 3-step stairs

    formula is right I would have to test out my theory further using random 3-step stair shapes from the 10cm by 10cm gird. I am repeating the theory to ensure it's accurate, precise and reliable for further investigation such as Part two.

  1. number grid investigation]

    n+3 n+4 n+10 n+11 n+12 n+13 n+14 n+20 n+21 n+22 n+23 n+24 n+30 n+31 n+32 n+33 n+34 n+40 n+41 n+42 n+43 n+44 Stage A: Top left number x Bottom right number = n(n+44) = n2+44n Stage B: Bottom left number x Top right number = (n+40)(n+4)= n2+4n+40n+160 = n2+44n+160 Stage B - Stage A: (n2+44n+160)-(n2+44n)

  2. Number Stairs

    the numbers in the 3 step stair in to algebra by making the position number n, then relating all other numbers to the position number, as you up a level on the step stair you add the grid sizes number (in this case 10)

  1. Number stairs

    The above values increase by the constant number [4] and also that in any 3-step number grid, if the grid size increases by 1 then the constant number is added to the value (The Highest Common Factor) In the above diagram the grid size is increasing by 1, such as

  2. Step-stair Investigation.

    then numbers in its row, minus the last triangle number it gives the value of the (blank)g +(blank) bit in every step stair. So if I put n-1 at the top of the sigma it will mean that the formula will add up all the triangle numbers from T1 to Tn - 1.

  1. For other 3-step stairs, investigate the relationship between the stair total and the position ...

    280,200 & 220 and show them as shown below: We know that the above values increase by the constant number [20] and also that in any 5-step grid square if the grid size increases by 1 then the constant number is added to the value (The highest Common Factor)

  2. number stairs

    = 25 + (10 - 9) = 25 + 1 =26 n + ( g - 8 ) = 25 + (10 - 8) = 25 + 2 =27 n + g = 25 + 10 = 35 n + ( g + 1 )

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work