• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 1966

Area Under a Straight Line Graph - Calculate the area under a straight line graph.

Extracts from this document...

Introduction

Area Under a Straight Line Graph

Task:

Calculate the area under a straight line graph.  Investigate.

Plan:

I intend to start off with simple diagrams eg y = x, y = x + 1, y = x + 2 etc.

I will then calculate the areas and put them into a table.  I can then use the table and the diagrams to help me find a generalisation.  I can then draw more complex diagrams by changing the gradient and the intercept.  I can then find generalisations with several variables.  I then will test and explain these generalisations.

image00.png

Basic Diagrams:image01.png

image12.pngimage13.pngimage14.pngimage16.pngimage15.png

Equation

Area of ‘triangle’

Area of ‘rectangle’

Total Area

y = x

(10 x 10) / 2 = 50

-

50 units2

y = x + 1

50

1 x 10 = 10

6o units2

Y= x + 2

50

2 x 10 = 20

70 units2

y = x + 3

50

3 x 10 = 30

80 units2

y = x + 4

50

4 x 10 = 40

90 units2

y = x + 5

50

5 x 10 = 50

100 units2

y = x + 10

50

10 x 10 = 100

150 units2

Generalisation:

x2 / 2 + xc  

This generalisation I found for when the gradient is 1.

X2 / 2  stands for the area of the triangular section.  This is because x2  would give you the area if it was a square as x is the length of the side.  It is divided by 2 as it is a triangle.

Xc is the area of the rectangular section.

Triangular section.

                                                     Rectangular section

Therefore the generalisation stands for the total area!

Test of 1st generalisation:

Taking y = x + 2 …

Total Area = x2 / 2 + xc

                      102 / 2 + (10 x 2)

                     (100 / 2) + 20

                     50 + 20

                     70 units2

Taking y = x + 10 …

Total Area = x2 / 2 + xc

                      102 / 2 + ( 10 x 10)

                      (100 / 50) + 100  

                       50 + 100

                       150 units2

...read more.

Middle

3 x 10 = 30

130 units2

y= 2x +4

100

4 x 10 = 40

140 units2

y = 2x + 5

100

5 x 10 = 50

150 units2

y =2x + 10

100

10 x 10 = 100

200 units2

2nd Generalisation:

x2m / 2 + xc

This generalisation was found when the gradient is 2.  

x2m / 2 stands for the triangular section.  The change from the last generalisation is the m.  The m means that the section is multiplied by the gradient to get the right area of the whole because the gradient is more than 1!  You can then divide by 2 and you have the correct area for the triangular section.  xc is for the same reasons as in the 1st gradient.

Test of 2nd generalisation:

Taking y = 2x + 1…

Total Area = x2m / 2 + xc

                     102(2) / 2 + 10(1)

                     100(2) / 2 + 10

                     200 / 2 + 10

                     100 + 10

                     110 units2

Taking y = 2x + 5…

Total Area = x2m / 2 + xc

                     102(2) / 2 + 10(5)

                     100(2) / 2 + 50

                     200 / 2 + 50

                     100 + 50

                   150 units2

Although I found this generalisation to fit when the gradient is 2 I think that it will work with other gradients as well as the m is a variable.  To find out if I am right I am going to do some more tests to see whether I will get the right answers or not.  To do this however I have to look at more complex diagrams.  I am however just going to sample a couple to see whether they will work.  There isn’t the need now for as many as before as I have already found the generalisation I wish to test.

More complex Diagram… continued:image06.pngimage07.png

Equation

Area of ‘triangle’

Area of ‘rectangle’

Total Area

y = 3x + 3

(10 x 30)/2 = 150

3 x 10 = 30

180 units2

y = 3x +5

150

5 x 10 = 50

200 units2

y= 4x + 2

(10 x 40)/2 = 200

2 x 10 = 20

220 units2

y = 4x + 10

200

10 x 10 =100

300 units2

image08.pngimage09.png

Test of 2

...read more.

Conclusion

image11.pngDraw the step-graph which starts by dropping and then going horizontally

across the width of the vertical strips (take 5m as the example again!).
          The area under this lower step-graph is less than the area under the curve itself.

image11.png        The area under the curve itself is between the 2 areas found from the upper

and lower step-graphs.  We can then take the mean of these 2 values as a reasonable approximation to find the approximate area.

By looking at the two methods I believe that the Trapezium Rule is a lot better!  It is quicker, easier to use, and is a lot more accurate to the true area!

Conclusion:

The Trapezium Rule is the best way to find the area under a curved line graph.  I also discovered that the areas found are a lot more accurate when the lowest value possible is used for the widths.  For instance if the width of 10 goes equally across the graph, then it is better to halve the widths and use 5 as you get a more accurate answer!

With more time:

If I had been given more time, then I would have introduced some A-level work, such as calculus and differentiation.  This is because I planned to research these and teach them to me to find the area under curved line graphs but I didn’t have enough time!  I also would have included more examples of the Trapezium Rule – in practice and in working examples; as well as using detailed diagrams and examples of the Step Method.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. The Area Under A Curve

    When I was counting the half squares I counted every square that the line passed through and this means that it is not very accurate to just divide the answer by 2 because the half squares were not equal sizes and to just divide by 2 would be very inaccurate.

  2. Medicine and mathematics

    hour interval between doses> Dosage / mg Hour 1 2 3 4 5 Total Amount of penicillin in body 0 300 300 1 180 180 2 108 108 3 64.8 64.8 4 38.88 38.88 5

  1. Geography Investigation: Residential Areas

    Table 7 Cumulative Frequency Index of Decay Number of Roads Upper Limit Cumulative Frequency 0 < 5 1 < 5 1 5 < 10 1 < 10 2 10 < 15 1 < 15 3 15 < 20 2 < 20 5 20 < 25 1 < 25 6 25

  2. Geographical Inquiry into the proposed redevelopment plan of the Elephant and Castle.

    * 5000 construction jobs over 7 years. * Enhanced Social Infrastructure to include the creation of new community facilities and enhanced and expanded existing provision. * Totally comprehensive local labour intiative, including construction training, jobs brokerage and education bursaries. * A strategy for education life long learning- a listening and

  1. Calculate the Area of a Shape

    * The pattern is going up in 1/2 cm2 each time a dot is added to the edge. By looking at the pattern I have created formula in both words and algebra. Area= the number of dots A=N 2 2 To show I'm right: When =N=6 A= 6 =3cm2 2 If you look at my table this correct.

  2. Assignment 2 Pond area

    3 divisions will be made giving: The mid-ordinate coordinates are: So the area is 20 x (22.07 + 7.93 + 7.93) = 20 x 37.93 = 758.6 m2 The calculator foretold the area under this curve 775.5 m2 give an error % of (775.5 - 758.6)/775.5 x 100 = 2.18%

  1. Regeneration has had a positive impact on the Sutton Harbour area - its environment, ...

    This created about 500 jobs. These things, amongst the building of modern, luxury accommodation, the free space that was created around the area became more enviable at just 10 minutes from the Central business District and the creation of Barbican Glass, meant that the City Council now had a larger income that could be spent on regenerating the area further.

  2. Local area report on Rhondda Valley.

    * Many houses are in a state of disrepair. * Crime rates are high, especially drugs related. * Communication links are poor, both road and rail.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work