• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  • Level: GCSE
  • Subject: Maths
  • Document length: 1675 words

Bad Tomatoes

Extracts from this document...


Bad Tomatoes Bad Tomatoes Identical good tomatoes are placed in a box (see example). Each tomato is a sphere. Each tomato just touches all the other tomatoes next to it as shown in the diagram. Tomato five goes bad. This is counted as the first hour. One hour later, all the tomatoes it touches go bad (now tomatoes 5,1,6 and 9 are bad). This continues every hour untill all the tomatoes in the box are bad. I aim to investigate how tomatoes go bad in the above tray, and in trays of different sizes. How do tomatoes go bad in trays? In this investigation, I aim to find a formula for calculating the total time required for all tomatoes to go bad in a rectangular tray of any rectangular size, and with any bad tomato starting position. To achieve this, I will first need to explain with the use of diagrams, how I arrived at a formula for the total time required for the tray to go bad. This will be done in three stages, followed by a worked example, which will answer both part 1 of the investigation, and part 2. Part 3 is an extension of the investigation concerned with the average total time required a tray to go bad starting from one single tomato. ...read more.


The longest time, therefore will be the total time required for the whole tray to go bad. The formulas for calculating the time the bad tomatoes reach the corners are: Corner T1 = (Q-1) + (P-1) Corner T2 = (M-Q) + (P-1) Corner T3 = (N-P) + (M-Q) Corner T4 = (Q-1) + (N-P) So the time needed for the whole tray to go rotten is Worked example This worked example will answer part 1 of the given investigation. The given tray size 4 by 4 can be seen in the following diagram, where the differently shaded cells are the three distinctively different starting positions. There is no point to consider other starting positions, as they will be similar to either 1,5 or 6 because of the symmetry; 1 is similar to 4, 16 and 13; 5 is similar to 9,8,12,2 and 3; 6 is similar to 7,11,10,14 and 15. They are similar because the lines of symmetry show that the square can be split into eight identical sections. Using notation from the previous section, and using formulae for the most remote corner from the starting position, we can calculate the time required for the whole tray to gto bad from starting positions 1,5 and 6, and therefore from any other position. ...read more.


13 is the initial bad tomato: T13=4 So the average time for the tray to go bad is: Taverage = [(8+7+6+6+5+4)/6] hours=6 hours This can be seen easier on the following histogram: Applying my formula for calculating the approximate average time for the tray to go bad: Trough average = 3/4(M+N) = 3/4(5+5) = 7.5 hours Again the result is that the approximate average is close to the true average different by 20%. I predict that as the size of the tray increases, the true average time required for the tray to go bad and the approximate average time given by my formula will become closer. Conclusion for whole investigation I have develpoed a general formula for calculating the time for a tray of any size to become rotten, starting from one tomato. I applied the formula to the practical case of square size 4 by 4. The formula does not cover the case of several tomatoes going bad at the beginning in different places of the tray. I can only say that the tray will become rotten faster in this case. I have also devised a formula which calculates the approximate average time required for a tray of any size to go bad and tested it on trays 4 by 4 and 5 by 5 which show that it is accurate within 20%. 1 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Bad Tomatoes section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Bad Tomatoes essays

  1. Bad Tomatoes

    equations that would cancel each other out so I was left with what A represented: 2. 4A + 2B + C = 6 - 1. A + B + C = 3 5. 3A + B = 15 4. 16A + 4B + C = 15 - 3.

  2. In this project I am going to examine the time taken for a whole ...

    The table just above this paragraph shows the total number of bad tomatoes. The columns towards the right hand side determine what the nth term will involve. If there are two differences that means the nth term will involve a 2.

  1. GCSE Maths Bad Tomato Investigation

    will equal the time for the whole tray to go bad. The reason for this expression working is using the XY rule, when a tomato in the corner goes bad, the one in the opposite corner will be the furthest one away.

  2. GCSE Maths Bad Tomato Investigation

    2L but there is 2 taken away from this to account for the original bad tomato and the corner tomato which the two sides share. This formula will work for any sized square were the initial tomato is on an edge and next to a corner.

  1. GCSE Mathematics - Bad tomatoes

    I have also found out that if tomato no.6 goes bad first it would take the same amount of time to make the whole tray bad if tomato nos.7, 10 and 11 were the 1st tomatoes to go bad first.

  2. Bad Tomatoes

    4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 5 6 7

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work