• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Beyond Pythagoras

Extracts from this document...

Introduction

Beyond Pythagoras Pythagoras Theorem is a� + b� = c�. 'a' being the shortest side, 'b' being the middle side and 'c' being the longest side (which is always the hypotenuse) of a right angled triangle. The numbers 3, 4 and 5 satisfy this condition: 3� + 4� = 5� because 3� = 3 x 3 = 9 4� = 4 x 4 = 16 5� = 5 x 5 = 25 and so 3� + 4� = 9 + 16 = 25 = 5� We also checked to see if similar sets of numbers also satisfy this condition: (smallest number)� + (middle number)� = (largest number)� The numbers 5, 12 and 13 also satisfy this condition: 5� + 12� = 13� because 5� = 5 x 5 = 25 12� = 12 x 12 = 144 13� = 13 x 13 = 169 and so 5� + 12� = 25 + 144 = 169 = 13� The numbers 7, 24 and 25 also satisfy this condition: 7� + 24� = 25� because 7� = 7 x 7 = 49 24� = 24 x 24 = 576 25� ...read more.

Middle

n To get these formulas I did the following: Take side 'a' for the first five sets of numbers; 3, 5, 7, 9, 11. From these numbers you can see that the formula is 2n + 1 because they are consecutive odd numbers. From looking at my table of results, I noticed that 'an + n = b'. So I took my formula for 'a' (2n + 1) multiplied it by 'n' to get '2n� + n'. I then added my other 'n' to get: 2n� + 2n. Side 'c' is just the formula for side 'b' +1: 2n� + 2n + 1 The perimeter = a + b + c. Therefore I took my formula for 'a' (2n + 1), my formula for 'b' (2n� + 2n) and my formula for 'c' (2n� + 2n + 1). Then I did the following: 2n + 1 + 2n� + 2n + 2n� + 2n + 1 This can be rearranged to equal: 4n2 + 6n + 2 The area = (a x b) ...read more.

Conclusion

= (a + 2d)� a� + a� + ad + ad + d� = (a + 2d)� 2a� + 2ad + d� = (a + 2d)� 2a� + 2ad + d� = (a + 2d)(a + 2d) 2a� + 2ad + d� = a� + 2ad + 2ad + 4d� 2a� + 2ad + d� = 4d� + a� + 4ad If you equate these equations to 0 you get the following: a� - 3d� - 2ad = 0 Change a to x: x� - 3d� - 2dx = 0 Factorise this equation to get: (x + d)(x - 3d) Therefore: x = -d x = 3d x = -d is impossible as you cannot have a negative dimension. a, a+d, a + 2d Is the same as: 3d, 4d, 5d This tells us that the only Pythagorean triples are 3, 4, 5 or multiples of 3, 4, 5 e.g. 6, 8, 10 or 12, 16, 20 etc. Mathematics GCSE Coursework Beyond Pythagoras Luke Hopwood 11B Candidate number: 7484 The Mirfield Free Grammar ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Pythagorean Triples section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Pythagorean Triples essays

  1. Maths GCSE coursework: Beyond Pythagoras

    12 24 40 60 84 8 12 16 20 24 1st difference 4 4 4 4 2nd difference The 2nd difference is 4 so we must find the formula for the 'middle number'. 4 / 2 = 2 [4 is halved due to the use of n� So we must

  2. Pythagoras Theorem

    2a� + 1 = a4 + 2a� + 1 = a4 + 2a� + 1 = a4 +2a� +1 By cancelling the formula down, so that it is the same on both sides, I have proven that the formulae: o b = (a� - 1)/2 o c = (a� +

  1. Beyond Pythagoras.

    N Length of middle side 1 4 2 12 3 24 There does seem to be a pattern because all the middle side numbers are multiples of 4. 12-4=8 24-12=12 12-8=4. This again reinforces the fact that there is a pattern as the 2nd difference is 4.

  2. Investigating families of Pythagorean triples.

    400 2 20 48 52 400 2304 2704 3 28 96 100 784 9216 10000 4 36 160 164 1296 25600 26896 5 44 240 244 1936 57600 59536 6 52 336 340 2704 112896 115600 7 60 448 452 3600 200704 204304 8 68 576 580 4624 331776 336400

  1. Beyond Pythagoras .

    A = 2n + 1 B = 2n2 + 2n C = 2n2 + 2n +1 These are the original formulas and I will be relating to them often later in this. I worked these all out using the above technique and my observations proved to be correct.

  2. Beyond Pythagoras

    Therefore, 2n must be part of the formula. Difference 2n Difference between n and a a Difference 2 2 4 6 2 2 4 4 8 2 2 6 4 10 2 2 8 4 12 2 The differences show that `a' and `n' are changing at the same rate

  1. Maths Number Patterns Investigation

    However, because 4 are the difference of the difference, the formula must be n2. I now believe that the answer will have something to do with 4n2. So, I will now write out the answers for 4n2. 4n2 works for the first term, but, it then collapses after this, as

  2. Beyond Pythagoras

    (9, 40, 41) a2 + b2 = c2 92 + 402 = 412 81 + 1600 = 1681 Scale: 1cm=2cm b) (11, 60, 61) a2 + b2 = c2 112 + 602 = 612 121 + 3600 = 3721 Scale: 1cm=2cm c)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work