• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Beyond Pythagoras

Extracts from this document...

Introduction

Beyond Pythagoras Pythagoras Theorem is a� + b� = c�. 'a' being the shortest side, 'b' being the middle side and 'c' being the longest side (which is always the hypotenuse) of a right angled triangle. The numbers 3, 4 and 5 satisfy this condition: 3� + 4� = 5� because 3� = 3 x 3 = 9 4� = 4 x 4 = 16 5� = 5 x 5 = 25 and so 3� + 4� = 9 + 16 = 25 = 5� We also checked to see if similar sets of numbers also satisfy this condition: (smallest number)� + (middle number)� = (largest number)� The numbers 5, 12 and 13 also satisfy this condition: 5� + 12� = 13� because 5� = 5 x 5 = 25 12� = 12 x 12 = 144 13� = 13 x 13 = 169 and so 5� + 12� = 25 + 144 = 169 = 13� The numbers 7, 24 and 25 also satisfy this condition: 7� + 24� = 25� because 7� = 7 x 7 = 49 24� = 24 x 24 = 576 25� ...read more.

Middle

n To get these formulas I did the following: Take side 'a' for the first five sets of numbers; 3, 5, 7, 9, 11. From these numbers you can see that the formula is 2n + 1 because they are consecutive odd numbers. From looking at my table of results, I noticed that 'an + n = b'. So I took my formula for 'a' (2n + 1) multiplied it by 'n' to get '2n� + n'. I then added my other 'n' to get: 2n� + 2n. Side 'c' is just the formula for side 'b' +1: 2n� + 2n + 1 The perimeter = a + b + c. Therefore I took my formula for 'a' (2n + 1), my formula for 'b' (2n� + 2n) and my formula for 'c' (2n� + 2n + 1). Then I did the following: 2n + 1 + 2n� + 2n + 2n� + 2n + 1 This can be rearranged to equal: 4n2 + 6n + 2 The area = (a x b) ...read more.

Conclusion

= (a + 2d)� a� + a� + ad + ad + d� = (a + 2d)� 2a� + 2ad + d� = (a + 2d)� 2a� + 2ad + d� = (a + 2d)(a + 2d) 2a� + 2ad + d� = a� + 2ad + 2ad + 4d� 2a� + 2ad + d� = 4d� + a� + 4ad If you equate these equations to 0 you get the following: a� - 3d� - 2ad = 0 Change a to x: x� - 3d� - 2dx = 0 Factorise this equation to get: (x + d)(x - 3d) Therefore: x = -d x = 3d x = -d is impossible as you cannot have a negative dimension. a, a+d, a + 2d Is the same as: 3d, 4d, 5d This tells us that the only Pythagorean triples are 3, 4, 5 or multiples of 3, 4, 5 e.g. 6, 8, 10 or 12, 16, 20 etc. Mathematics GCSE Coursework Beyond Pythagoras Luke Hopwood 11B Candidate number: 7484 The Mirfield Free Grammar ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Pythagorean Triples section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Pythagorean Triples essays

  1. Maths GCSE coursework: Beyond Pythagoras

    12 24 40 60 84 8 12 16 20 24 1st difference 4 4 4 4 2nd difference The 2nd difference is 4 so we must find the formula for the 'middle number'. 4 / 2 = 2 [4 is halved due to the use of n� So we must

  2. Pythagoras Theorem

    2a� + 1 = a4 + 2a� + 1 = a4 + 2a� + 1 = a4 +2a� +1 By cancelling the formula down, so that it is the same on both sides, I have proven that the formulae: o b = (a� - 1)/2 o c = (a� +

  1. Beyond Pythagoras.

    However: 1x2=2 2x2=4 3x2=6 This is wrong. However I have noticed a pattern. Each of the numbers in this pattern is one less than the one I was aiming to get. This must mean that 2n+1 is the correct formula To check this I will pick a random number between

  2. BEYOND PYTHAGORAS

    M is always even. iii. L is always even. iv. M+2=L. To show that these patterns are correct and to see if there are any more patterns, I am going to extend this investigation and draw two more Pythagorean Triples.

  1. Investigating families of Pythagorean triples.

    400 2 20 48 52 400 2304 2704 3 28 96 100 784 9216 10000 4 36 160 164 1296 25600 26896 5 44 240 244 1936 57600 59536 6 52 336 340 2704 112896 115600 7 60 448 452 3600 200704 204304 8 68 576 580 4624 331776 336400

  2. Beyond Pythagoras .

    chart I found formulas, which can enable us to discover any of the numbers in triples that, have an odd smallest number. In order to work out 'a', I had to write out the first few numbers and then find the difference between the numbers to help create a formula.

  1. Beyond Pythagoras

    c = (a� + 1) 2 Using the two formulae on the above page (`b' and `c' in terms of `a') with my formula for `a' in terms of `n', I can calculate `b' and `c' in terms of `n' by putting a = 2n + 1 into the formulae.

  2. Maths Number Patterns Investigation

    4 , 12 , 24 , 40 , 60 8 12 16 20 4 4 4 The difference of the difference of the lengths of the middle sides is 4. This means that the formula has to have something to do with 4, most likely 4n.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work