• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 1490

Border sequences

Extracts from this document...

Introduction

image00.png

image03.pngimage01.png

Shape 1

image07.png

image11.png

Shape 2        

image28.pngimage19.png

Shape 3        

image04.pngimage02.pngimage04.pngimage02.pngimage02.pngimage02.pngimage04.pngimage02.pngimage02.pngimage02.pngimage02.pngimage02.pngimage02.pngimage02.png

image04.pngimage04.pngimage04.pngimage06.pngimage05.pngimage04.pngimage02.png

image04.pngimage04.pngimage04.pngimage04.png

Shape 4image04.pngimage04.pngimage04.pngimage04.png

image04.png

image08.png

image09.png

A shape, that I have named Shape 3 on the previous page, was given to me and my task was to find the correlation between the shape number and the amount of squares needed to make this shape.

At first glance I named the shape, Shape 1, but after studying the pattern I realised that I could draw two smaller shapes that still followed the way in which the original shape was created.

image10.png

image13.pngimage13.pngimage12.pngimage12.png

         Row            No. of cubes     Total

Shape 1:   1                  1  

                                   2                  3                          5        

  1. 1                                            

Shape 2:  1                   1

  2                   3

  3                   5                          13

           4                   3

            5                   1image14.png

Shape 3:                    1                   1

            2                   3

            3                   5

            4                   7                           25

            5                   5

            6                   3

            7                   1image14.png

Shape 4:                    1                   1

            2                   3

            3                   5

            4                   7

            5                   9                 41

            6                   7

            7                   5

            8                   3

            9                   1

What I have noticed was that instead of writing down each number of squares in each

row to find the total I could use a special method:

                        2[sum of n consecutive odd no’s] + 2n + 1

For example:

Shape no. 2 ~  2[ 1 +  3 ] + 2 x 2 + 1

                =     2  +  6   +    4    + 1

                =   13

image15.png

I am going to start by trying to find the nth term by using the method below:

        No of total squares:        5        13        25        41image16.png

1st diferrences not the same:             8        12     16

2nd differences arethe same:                 4         4

If the 2nd difference is a constant, the formula for the n

...read more.

Middle

Rest of Sequence            3             5                   7              9

   2                       2                  2

This difference of 2 is the number which goes infront of n.  This forms the second part of the formula.

To find the third and last part of the formula, which will be a number on it’s own, I will use the 1st and 2nd part of the formula that I have already obtained:

nth term = 2n² + 2n + ?

1st term ~ 2x1² + (2x1) + ? = 5

                                               2     +    2    + ? = 5

                                                                 ? = 1

                                 2nd term ~ 2x2² + (2x2) + ? = 13

                                               8     +   4     + ? = 13

                                                                 ? = 1

                                3rd term ~ 2x3² + (2x3) + ? = 25

                                                      18    +   6     + ? = 25

                                                                        ? = 1

This number is a constant therefore the number 1 is the last part in the formula.

image20.png

 The formula for the nth term is:                  2n² + 2n + 1image21.png

image22.png

When I thought about the total number of squares, I realised that this, in other words, was the same as saying the number of black squares + the number of white squares.

This gave me the idea for doing the following:

I am going to find the equation for the number of white squares:

image23.png

                Shape Number           1           2                  3            4            n

           No of white squares           4              8                 12          16        4n

 the equation for the number of white squares is:    4nimage24.png

...read more.

Conclusion

                2                                                        2

144        OR-146

              2                                                          2

image24.pngimage24.png

                                 72     OR         -73

A: Yes, 10513 does make up a shape number.  The shape number is 72.  It      

     can’t be  - 73 as it would be impossible to have a minus value shape  

     number.

image34.png

image35.png

On receiving this task, I thought it would make this exercise easier to understand if I built my own 3D model by using multi-link cubes.  By this way I was able to take off each layer and count the cubes that lay underneath.  I thought this was a very practical and helpful way of dealing with this particular task.

While I was doing this I noticed that in each layer, instead of writing the total as a number, I could substitute it with two squared, consecutive numbers, similar to what I have done in part 1.

These are my results of the different amount of cubes in each layer of each shape number that I have focused on in part 1:

image36.png

                    Layer           No. of cubes       Squared No’s        Total

Shape 1            1                           1                    0² + 1²                        

  1.  5                    1² + 2²                   7
  2.  1                    0² + 1²

Shape 2            1                           1                    0² + 1²

    2                            5                   1² + 2²

    3                          13                   2² + 3²                  25

    4                             5                   1² + 2²

    5                           1                    0² + 1²

Shape 3  1                           1                    0² + 1²                                                                                

    2                           5                    1² + 2²                                                      

    3                         13                    2² + 3²                                                      

    4                         25                    3² + 4²                  41                              

    5                         13                    2² + 3²                                              

    6                           5                    1² + 2²                                                

    7                           1                    0² + 1²                                                  

Shape 4           1                          1                    0² + 1²  

   2                           5                    1² + 2²

   3                         13                    2² + 3²

   4                         25                    3² + 4²

   5                         41                    4² + 5²                 129

   6                         25                    3² + 4²                                                

   7                         13                    2² + 3²                                                                      

   8                           5                    1² + 2²                                                    

   9                           1                    0² + 1²                                  

What I noticed was:

In Shape 1 there were – three 1² = 3 (1²)      

                                  one  2² = 2²

In Shape 2 there were -   four 1² = 4 (1²)

                               three 2²  = 3 (2²)

                                        one 3² =  3²                      

In Shape 3 there were -  four 1² = 4 (1²)

                                   four 2² = 4 (2²)

                                three 3² = 3 (3²)

                                         one 4² = 4²

In Shape 4 there were -   four 1² = 4 (1²)

                                   four 2² =  4 (2²)    

                                 four 3² =  4 (3²)      

                                  three 4² =  3 (4²)      

                                    one 5² = 5²                                                                                                                                                                                                          

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Investigate a formula to see how many squares would be needed to make any ...

    They increment by 4 every time the figure increases in size. I think that this relationship will be important in finding the formula to discover how many blue squares are required to surround the pink square(s) thus making a bigger figure.

  2. A dark cross-shape has been surrounded by white squares to create a bigger cross-shape. ...

    For the next pattern I predict that the total number of squares will be 41, using the following pattern: 1 + 3 + 5 + 7 + 9 + 7 + 5 + 3 + 1 = 41 A 7x7 Cross-shape (Shape 4)

  1. Maths Sequences Investigation

    I simply looked down the table above and noted down the difference in them: White Squares Difference Diameter Difference 4 3 4 2 8 5 4 2 12 7 4 2 16 9 4 2 20 11 4 2 24 13 4 2 28 15 4 2 32 17 Forming

  2. Black and white squares

    45 6 61 146 20 60 41 86 7 85 231 24 84 61 147 1 Tn-2nd Wn-2 Bn-2 2 Tn-1st Wn-1 Bn-1 3 Tn Wn Bn After producing the formulas above, I have decided to look at the issue in a different angle, by adding the cumulative total number

  1. For this task we were required to create a model that can be used ...

    The first 182 units would cost a certain amount, and the units after that would cost a different amount, usually cheaper than the first cost. Npower has a cost of 8.210p per unit for the first 182 units and 7.040p for any units after 182.

  2. See how many squares would be needed in order to construct any cross-built up ...

    this shows it is a multiple of 4 and has a regular pattern and maybe a linear equation. The first formula I will try to find is the formula for the surrounding white squares. Trying for a Formula- white squares I will show he first 4 patterns as an example.

  1. A dark cross-shape has been surrounded by white squares to create a bigger cross-shape. ...

    0 1 1 1 x 1 4 1 5 3 x 3 8 5 13 5 x 5 12 13 25 7 x 7 16 25 41 9 x 9 20 41 61 From these results I can see a direct relationship with the amount of border squares.

  2. Pay Role Model.

    I will make the minimum hours less. It's was originally 35 hours per week and I will now make this less so it is 30 hours per week. The new formula would be: " =B4-30 " My prediction is that every employee will get more money because they will be paid overtime rate for more of their

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work