• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 1490

Border sequences

Extracts from this document...

Introduction

image00.png

image03.pngimage01.png

Shape 1

image07.png

image11.png

Shape 2        

image28.pngimage19.png

Shape 3        

image04.pngimage02.pngimage04.pngimage02.pngimage02.pngimage02.pngimage04.pngimage02.pngimage02.pngimage02.pngimage02.pngimage02.pngimage02.pngimage02.png

image04.pngimage04.pngimage04.pngimage06.pngimage05.pngimage04.pngimage02.png

image04.pngimage04.pngimage04.pngimage04.png

Shape 4image04.pngimage04.pngimage04.pngimage04.png

image04.png

image08.png

image09.png

A shape, that I have named Shape 3 on the previous page, was given to me and my task was to find the correlation between the shape number and the amount of squares needed to make this shape.

At first glance I named the shape, Shape 1, but after studying the pattern I realised that I could draw two smaller shapes that still followed the way in which the original shape was created.

image10.png

image13.pngimage13.pngimage12.pngimage12.png

         Row            No. of cubes     Total

Shape 1:   1                  1  

                                   2                  3                          5        

  1. 1                                            

Shape 2:  1                   1

  2                   3

  3                   5                          13

           4                   3

            5                   1image14.png

Shape 3:                    1                   1

            2                   3

            3                   5

            4                   7                           25

            5                   5

            6                   3

            7                   1image14.png

Shape 4:                    1                   1

            2                   3

            3                   5

            4                   7

            5                   9                 41

            6                   7

            7                   5

            8                   3

            9                   1

What I have noticed was that instead of writing down each number of squares in each

row to find the total I could use a special method:

                        2[sum of n consecutive odd no’s] + 2n + 1

For example:

Shape no. 2 ~  2[ 1 +  3 ] + 2 x 2 + 1

                =     2  +  6   +    4    + 1

                =   13

image15.png

I am going to start by trying to find the nth term by using the method below:

        No of total squares:        5        13        25        41image16.png

1st diferrences not the same:             8        12     16

2nd differences arethe same:                 4         4

If the 2nd difference is a constant, the formula for the n

...read more.

Middle

Rest of Sequence            3             5                   7              9

   2                       2                  2

This difference of 2 is the number which goes infront of n.  This forms the second part of the formula.

To find the third and last part of the formula, which will be a number on it’s own, I will use the 1st and 2nd part of the formula that I have already obtained:

nth term = 2n² + 2n + ?

1st term ~ 2x1² + (2x1) + ? = 5

                                               2     +    2    + ? = 5

                                                                 ? = 1

                                 2nd term ~ 2x2² + (2x2) + ? = 13

                                               8     +   4     + ? = 13

                                                                 ? = 1

                                3rd term ~ 2x3² + (2x3) + ? = 25

                                                      18    +   6     + ? = 25

                                                                        ? = 1

This number is a constant therefore the number 1 is the last part in the formula.

image20.png

 The formula for the nth term is:                  2n² + 2n + 1image21.png

image22.png

When I thought about the total number of squares, I realised that this, in other words, was the same as saying the number of black squares + the number of white squares.

This gave me the idea for doing the following:

I am going to find the equation for the number of white squares:

image23.png

                Shape Number           1           2                  3            4            n

           No of white squares           4              8                 12          16        4n

 the equation for the number of white squares is:    4nimage24.png

...read more.

Conclusion

                2                                                        2

144        OR-146

              2                                                          2

image24.pngimage24.png

                                 72     OR         -73

A: Yes, 10513 does make up a shape number.  The shape number is 72.  It      

     can’t be  - 73 as it would be impossible to have a minus value shape  

     number.

image34.png

image35.png

On receiving this task, I thought it would make this exercise easier to understand if I built my own 3D model by using multi-link cubes.  By this way I was able to take off each layer and count the cubes that lay underneath.  I thought this was a very practical and helpful way of dealing with this particular task.

While I was doing this I noticed that in each layer, instead of writing the total as a number, I could substitute it with two squared, consecutive numbers, similar to what I have done in part 1.

These are my results of the different amount of cubes in each layer of each shape number that I have focused on in part 1:

image36.png

                    Layer           No. of cubes       Squared No’s        Total

Shape 1            1                           1                    0² + 1²                        

  1.  5                    1² + 2²                   7
  2.  1                    0² + 1²

Shape 2            1                           1                    0² + 1²

    2                            5                   1² + 2²

    3                          13                   2² + 3²                  25

    4                             5                   1² + 2²

    5                           1                    0² + 1²

Shape 3  1                           1                    0² + 1²                                                                                

    2                           5                    1² + 2²                                                      

    3                         13                    2² + 3²                                                      

    4                         25                    3² + 4²                  41                              

    5                         13                    2² + 3²                                              

    6                           5                    1² + 2²                                                

    7                           1                    0² + 1²                                                  

Shape 4           1                          1                    0² + 1²  

   2                           5                    1² + 2²

   3                         13                    2² + 3²

   4                         25                    3² + 4²

   5                         41                    4² + 5²                 129

   6                         25                    3² + 4²                                                

   7                         13                    2² + 3²                                                                      

   8                           5                    1² + 2²                                                    

   9                           1                    0² + 1²                                  

What I noticed was:

In Shape 1 there were – three 1² = 3 (1²)      

                                  one  2² = 2²

In Shape 2 there were -   four 1² = 4 (1²)

                               three 2²  = 3 (2²)

                                        one 3² =  3²                      

In Shape 3 there were -  four 1² = 4 (1²)

                                   four 2² = 4 (2²)

                                three 3² = 3 (3²)

                                         one 4² = 4²

In Shape 4 there were -   four 1² = 4 (1²)

                                   four 2² =  4 (2²)    

                                 four 3² =  4 (3²)      

                                  three 4² =  3 (4²)      

                                    one 5² = 5²                                                                                                                                                                                                          

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Investigate a formula to see how many squares would be needed to make any ...

    They increment by 4 every time the figure increases in size. I think that this relationship will be important in finding the formula to discover how many blue squares are required to surround the pink square(s) thus making a bigger figure.

  2. A dark cross-shape has been surrounded by white squares to create a bigger cross-shape. ...

    For the next pattern I predict that the total number of squares will be 41, using the following pattern: 1 + 3 + 5 + 7 + 9 + 7 + 5 + 3 + 1 = 41 A 7x7 Cross-shape (Shape 4)

  1. have been asked to find out how many squares would be needed to make ...

    I have found that the number of dark squares equals the total for the previous squares. I have decided to draw a new table similar to that of the table of differences on page 2 to help me find the progression of dark squares.

  2. A dark cross-shape has been surrounded by white squares to create a bigger cross-shape. ...

    . . . (iii) The bottom row of differences indicates a constant number, which shows there to be a pattern. If the fourth row had not indicated a constant number pattern (i.e. 2,2,2,2 or 6,6,6,6) then I would keep increasing the rows until I found one.

  1. Borders - Investigation into how many squares in total, grey and white inclusive, would ...

    Un = 2n� + 2n + 1 - 4n = 2n� - 2n + 1 And this result is the same as the previous total number of squares, the size and shape of the cross increasing regularly: 5/2 + 0.5 = 3 3/2 + 0.5 = 2 18 - 6

  2. Maths Sequences Investigation

    I simply looked down the table above and noted down the difference in them: White Squares Difference Diameter Difference 4 3 4 2 8 5 4 2 12 7 4 2 16 9 4 2 20 11 4 2 24 13 4 2 28 15 4 2 32 17 Forming

  1. I am going to investigate how changing the number of tiles at the centre ...

    This will give you the equation, 6 - 4, which equals +2 and this is then added to give the pattern formula, 4N + 2. Testing my Pattern formula. I will test my formula to see if it is producing the same values as in Table 1.

  2. Black and white squares

    So therefore we could say that to find the black squares, we should takeaway the formula of the white squares from the total squares. Formula = S (S stands for sum of squares) - C (Consistent difference) plus the sequence number.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work