• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  • Level: GCSE
  • Subject: Maths
  • Word count: 1244

Borders Coursework

Extracts from this document...

Introduction

Candidate no. 1874                                                                                       Saagar Kotecha 11SZ

Borders Coursework

Part 1:

Aim:

I shall investigate a set pattern of squares and shall look at how the total number of squares increases each time the geometric shape gets larger. I shall then look at the relationship between the increase in size of the geometric shape and the number of additional squares that need to be added to cause this increase.

Pattern Number

Shape

Squares

1

Black Squares   = 1

White Squares   = 0

Total Squares    = 1

2

Black Squares   = 1

White Squares   = 4

Total Squares    = 5

3

Black Squares   = 5

White Squares   = 8

Total Squares    = 13

4

Black Squares   = 13

White Squares   = 12

Total Squares    = 27

5

Black Squares   = 25

White Squares   = 16

Total Squares    = 55

6

Black Squares   = 41

White Squares   = 20

Total Squares    = 61

Prediction:

As the cross increases in length and width, I predict more squares will have to be added. I predict that the number of white squares should be directly proportional to the size of the cross.

...read more.

Middle

Formula:                 + bn + c

a = 2nd difference

                2

a =   4/2

   =  2

.

.    .       =     2n² + bn + c

Formula: 2n² +                 + c

1                 5               13               25                41                61

2×(1²)                   2×(2²)                   2×(3²)                       2×(4²)                    2×(5²)                 2×(6²)

= 2                     = 8                           = 18                       = 32                    = 50                         = 72

1-2                     5-8                         13-18                         25-32                     41-50                 61-72

= -1                    = -3                = -5                     = -7                    = -9                 = -11

            -2                        -2                    -2                           -2                           -2

.

.    .       =     2n² – 2n + c

Formula: 2n² – 2n +

When n = 1

   2 × (1²) – (2 × 1)

= 2 – 2

= 0 + ? = 1

= 0 + 1 = 1

c = 1

.

.    .  Formula for the total number of squares =  2n² – 2n + 1

Check:

formula for black squares + formula for white squares = formula for total no. of squares

2n² – 6n + 5       +             4n – 4                =              2n² – 2n + 1

       =                 2n² – 2n + 1                        =             2n² – 2n + 1

Test:

7

Black Squares   = 61

White Squares   = 24

Total Squares    = 85

When n= 7

Number of Black Squares = 2n² – 6n + 5

                                     = 2(7²) – 9(7) + 5

                                     = 98 – 42 +5

                                     = 56 + 5

                                     = 61

Number of Black Squares = 4n – 4

                                     = 4(7) – 4

                                     = 28 – 4

                                     = 24

Total Number of Squares  = 2n² – 2n + 1

                                     = 2(7²) – 2(7) + 1

                                     = 98 – 14 + 1

                                     = 85

Geometric Proof:

After examining the shapes it was realised that it is possible to work out the total number of squares geometrically. If the total number of white squares on one side are counted and the total number of

...read more.

Conclusion

;height:108.8px;margin-left:0px;margin-top:0px;" alt="image01.png" />

Total Cubes    = 7

3

image02.png

Total Cubes    = 25

4

Total Cubes    = 63

5

Total Cubes    = 129

6

Total Cubes    = 231

Finding the n thterm for the total number of cubes:

Formula:  an³ + bn² + cn + d

1                7               25                63              129              231

         6                    18               38                66               102

                  12                        28                     36                   44

                             8                           8                          8

Formula:                 + bn² + cn + d

a = 3rd difference

                6

a =   8/6

   =  4/3

.

.    .       =     4/3n³ + bn² + cn + d

Formula: 4/3n³ + bn² + cn + d

1                 7               25               63                129              231

4/3×(1³)                4/3×(2³)                  4/3×(3³)                       4/3×(4³)                    4/3×(5³)                 4/3×(6³)

= 4/3                     = 32/3                   = 36                       = 256/3                    = 500/3                 =288

1-4/3                     7-32/3                 25-36                         63-256/3                     129-500/3                 231-288

= -1/3            = -11/3                = -11                     = -67/3                    = -113/3                 = -57

-1/3         -11/3          -11             -67/3           -113/3             -57

      10/3           22/3            34/3             46/3             58/3

                   4                       4                  4                    4

Formula:  4/3n³ +                  + cn + d

a = 2nd difference

                2

a = 4/2

   = 2

.

.    .       =    4/3n³ + 2n² + cn + d

Formula: 4/3n³ + 2n² + cn + d

-1/3          -11/3           -11            -67/3           -113/3             -57

2×(1²)                   2×(2²)                   2×(3²)                       2×(4²)                    2×(5²)                2×(6²)

= 2                     = 8                           = 18                       = 32                    = 50                        = 72

-1/3+2                   -11/3+8                  -11+18                   -67/3+32                   -113/3+50                 -57+72

= 5/3                  = 13/3                 = 7                   = 29/3                   = 37/3                 = 15

            8/3                        8/3                    8/3                           8/3                           8/3

.

.    .       =     4/3n³ – 2n² + 8/3n + d

Formula: 4/3n³ + 2n² + 8/3n +  

When n = 1

   [4/3 × (1³)] + [2 × (1²)] + [8/3 × 1]

= 4/3 + 2 + 8/3

= 6

= 6 + ? = 7

= 6 + 1 = 7

d = 1

.

.    .  Formula for the total number of cubes = 4/3n³ + 2n² + 8/3n + 1

Check:

When n = 3

4/3n³ + 2n² + 8/3n + 1

4/3(3³) + 2(3²) + 8/3(3) + 1 = 63

4/3(27) + 2(9) + 8 + 1 = 63

36 + 18 + 8 + 1 = 63

         63             = 63

.

.    . Formula is correct

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Marked by a teacher

    T-total coursework

    5 star(s)

    Every term in the T-shape has had two things added to it; (x) which is horizontal translation, and (wy) which is grid width multiplied by the amount of vertical translation. Each term has had (x) added to it because each square in the T-shape has been moved horizontally by (x).

  2. Magic E Coursework

    e+3g e+4g e+4g+1 e+4g+2 ----- e+4g+(x-1) To get the final formula for arm length we need to add up the formulae from each of the rows and add up the 2 squares in between.

  1. Black and white squares

    Tn-2 = Wn-2 + Bn-2 My second observation, concerns the fact which I found in my table, that the sum we get from taking away the number of white squares in certain pattern from the total squares of that same pattern, we see that this sum is equal to the

  2. Investigation in to How many tiles and borders is needed for each pattern

    14 3 32 18 +4 18+4=22 4 50 22 Formula: I found out the formulas was a quadratic because it has a 2nd difference. For example in No of tiles: 8 18 32 50 10 14 18 4 4 I worked out the formula for the tiles, borders and the total tiles altogether.

  1. Borders - Investigation into how many squares in total, grey and white inclusive, would ...

    Another way of approaching this is to look at the differences between the totals again. For the total number of squares: 1 7 25 63 129 6 18 38 66 12 20 28 8 8 This shows there is a cubic relation between the totals, which can be found by

  2. T-Shapes Coursework

    the location of the "T" upon the grid. 2) Method Varying values of g will be tested to give different widths of the grid. Grid sizes to be used for data collection will range from 9 to 14. On these grids, from 5 sequential positions of the 3x1 "T", the Total Sum will be calculated.

  1. T-Shapes Coursework

    + 12 + 21 = 42 T-Number = 21 3rd T-Shape 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

  2. T-Total Maths coursework

    28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 T-number and T-Total table T-number T-total 18 34 19 39 37 129 38

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work