• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Emma's Dilemma

Extracts from this document...

Introduction

Mathematics GCSE

EMMA’S DILEMMA

1.

No. of arrangements

Arrangements

1

EMMA

2

MEAM

3

AEMM

4

MMEA

5

MMAE

6

AMEM

7

EMAM

8

AEMM

9

MAEM

10

AMME

11

MAME

12

MEMA

 2.

No. of arrangements

Arrangements

1

LUCY

2

LYCU

3

LYUC

4

LUYC

5

LCYU

6

LCUY

7

UCYL

8

UYCL

9

ULCY

10

ULYC

11

UYLC

12

...read more.

Middle

YLCU

21

YUCL

22

YULC

23

YCLU

24

YCUL

   3.

No. of arrangements

No. of letters

Position(n)

1

A

1

2

AB

2

6

ABC

3

24

ABCD

4

120

ABCDE

5

720

ABCDEF

6

5040

ABCDEFG

7

40320

ABCDEFGH

8

362880

ABCDEFGHI

9

3628800

ABCDEFGHIJ

10

I have completed the table by using a method I found after finding a pattern in the first few results. For a four-letter word (all different letters) there are 24 arrangements as I found in Question 2 (LUCY). There are six combinations beginning with each letter, with this knowledge I think that a five-letter word (all different letters) would have 120 arrangements. To prove this answer/back it up I have found another pattern in the table.

4 letter word         1x2x3x4=24 (No. of arrangements)

...read more.

Conclusion

3

2

Aabb

6

3

Aaabb

10

4

Aaaabb

15

5

Aaaaabb

21

6

Aaaaaabb

28

7

Aaaaaaabb

36

8

aaaaaaaabb

45

To further my investigation I have decided to investigate words with 3 different letters. First I will try to find the number of arrangements for the word abc using the formula then I will check it is correct by working it out myself, if the 2 results are the same then I will carry on finding the number of arrangements for words with 3 different letters in and produce a table.

3 letter word / 1a  x  1b  x  1c  = No. of arrangements

    1x2x3        /1x1 x 1x1 x 1x1 = 6/1 = 6

  1. abc
  2. acb
  3. bca
  4. bac
  5. cab
  6. cba

Both methods produced the same number of arrangements (6).

Position (n)

Words arranged

No. of arrangements

1

Abc

6

2

Aabc

12

3

Aaabc

20

4

Aaaabc

30

5

Aaaaabc

42

6

Aaaaaabc

56

7

Aaaaaaabc

72

8

aaaaaaaabc

90

...read more.

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Emma's Dilemma

    following it: 3 letters: A/A/B AAB ABA BAA 3 combinations 4 Letters: A/A/B/C AABC AACB ABCA ABAC ACBA ACAB BAAC BACA BCCA CAAB CABA CBAA 12 combinations (2 pairs of 2 different letters) I will now look at two pairs of 2 different letters with nothing following it: 4 letters:

  2. GCSE Mathematics: Emma's Dilemma

    Number Of Combinations 3 1 4 1*4 5 1*4*5 6 1*4*5*6 If a = number of arrangements n = number of letters The formula for a word with 3 of the same letters is a= ni/6 Let's review the formulae: Formula for a word with different letters: a=n!

  1. Emma's Dilemma

    I didn't add the 2! as it would not make sense because it would have then been: 4! / 4! Therefore I decided to multiply them together, hence giving me the equation mentioned above: 4!

  2. Emma's Dilemma

    noticed that the number of different arrangements for a word that has one letter repeated 4 times is one twenty-fourth of the number of different arrangements for a word which has the same amount of letters, but none repeated. For example: To find the number of different arrangements for SSSSEF

  1. Emma's Dilemma Question One: Investigate the number of different arrangements of the letters

    it proves that my rule works, and should work, not just for this combination of letters, but every one, and still produce the correct answers. Justification The reason why this rule occurs, is because there may-be the same number of letters, but any number can be used more than once.

  2. Emma's dilemma

    A word with five different letters 1) ABCDE 2) ABCED 3) ABDCE 4) ABDEC 5) ABEDC 6) ABECD 7) ACBDE 8) ACDEB 9) ACDBE 10) ACBED 11) ACEBD 12) ACEDB 13) ADBEC 14) ADBCE 15) ADCBE 16) ADCEB 17) ADECB 18)

  1. Emma’s Dilemma.

    As you can see my method of finding all the permutations allows them to be listed in ascending numerical order without missing out any. Altogether there are 12 possible arrangements of the letters in the name 'Emma' with no permutations missing or duplicated.

  2. Emma's Dilemma

    XAEL AELX LEAX ELAX XEAL AEXL LEXA ELXA XELA AXLE LXAE EXAL XLAE AXEL LXEA EXLA XLEA Advancing the investigation a step further, I decided to see if there was a correlation between the number of letters in a name and the number of different arrangements in which they can appear.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work