• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  • Level: GCSE
  • Subject: Maths
  • Word count: 3021


Extracts from this document...



INTRODUCTION: I will begin my Investigation by finding the number of arrangements does the word LUCY, EMMA and other words have. By doing this I will come up with a formula, which I could find, any number of arrangements, repeated words or no repeated words.

I will begin by finding the total arrangement does the word LUCY have. Then I will find the arrangement for a 1-lettered word, 2-letered word, 3-lettered word and then 5-lettered word, with no repeated letters. After that I will look at the arrangements and see if there is a pattern to the arrangements and find a formula, which can find any arrangements with no letter repeated.

Part 1

I will start my investigation by finding the number of arrangements does the word LUCY have.

  1. LUCY   7.   ULCY   13. CULY   19. YLUC
  2. LUYC   8.   ULYC   14. CUYL   20. YLCU
  3. LCUY   9.   UYLC   15. CLUY   21. YULC
  4. LCYU   10. UYCL   16. CLYU   22. YUCL
  5. LYCU   11. UCLY   17. CYLU   23. YCLU
  6. LYUC   12. UCYL   18. CYUL   24. YCUL

I have found 24 arrangements in the word LUCY. Now I am going to find out how many number of arrangements does a three-letter word, two letter word and one letter word have.

1-lettered word:


I have found only one arrangement in a one-letter word.

2-lettered word:

1.CA   2.AC

I have found only two arrangements in a two-lettered word.

3-lettered word:

1.   CAN   3.   ACN   5.   NAC

2.   CNA   4.   ANC   6.   NCA

I have found only six arrangements in a three-lettered word.

...read more.


Lets see what’s wrong with my formula.    

2 letters are same, then:

3 letters: 1*2*3/1*2

4 letters: 1*2*3*4/1*2

5 letters: 1*2*3*4*5/1*2

So to get the arrangement of a word with two same letters, then you have to divide it by 2. Lets see how you get the arrangement of a word with 3 letters same.

3 letters are same, then:

3 letters: 1*2*3/1*2*3

4 letters: 1*2*3*4/1*2*3

5 letters: 1*2*3*4*5/1*2*3

And so on.

I have realised that, to find the arrangement of a 4 lettered word with 3 same letters.

I have to get the arrangement of the 4-lettered word, which is 24. Then I have to find the arrangement of the repeated letters. So there are 3 letters same in a 4 lettered word. So the arrangement of the repeated letter is 6. Because the arrangement of a 3 lettered word is 6.

Then you have to divide 24 by 6 and you will get the answer, which is 4.

My prediction is that to find the arrangement of a word with repeated letters, you have to first get the arrangement of the word. Then you have get the number of arrangements of how many repeated letters there are. Then you divide both the number of arrangement of the word and the number of arrangement of the repeated letters. Then you will get the arrangement. This is my prediction.  

I have given a table below to show my prediction. I will call the prediction table, table 3

Prediction table:

3 letters same:

Table 3

Number of letters










...read more.


So the formula is:

A=N! / R!

A= Number of arrangements

N= Number of letters

R= Number of repeated letters

!= Number of arrangements for (N-1)

This formula can also be done in a calculator. By typing in the number of letters and then pressing '!’. You should get the arrangement.

These letters I put are important. Without these letters you cannot find the arrangement. The letter ‘A’ tells you what the arrangement is. Without that letter you would not know the arrangement. So the ‘A’ letter is important. The letter ‘N’ tells you how many letters are in the word. With this letter you need to find out the arrangement of a no repeated word. So this letter is important. The Letter ‘R’ is the final letter in the formula. This letter tells you how many repeated letters there are. Without this letter you cannot find the arrangement of a word with repeated letters in it. Last of all is the icon ‘!’. This icon is very important. This icon is used for everything. To find an arrangement for a repeated letter or no repeated letter. This icon cannot be removed from the formula because without that icon you cannot find the formula.    


From this investigation I have learned how to find arrangements and work out the formula. This investigation was quiet exciting but it was also quite tiring because of finding the arrangement. This investigation was long and quite hard as well. It was quite challenging investigation.


...read more.

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Emma's Dilemma

    Think of it like this: - If you have a word consisting of four different letters, L, U, C and Y, to find the combinations, we will need to go through all the four letters, as they all have different combinations.

  2. To investigate the various arrangements that could be made with different names or words. ...

    ELLL 2) LELL 3) LLEL 4) LLLE I have created four words from ELLL. This is less than LUCY and LILY, which also have the same amount of letters. This is because there are fewer different letters to arrange. Third Arrangement: Words created from the five lettered word "LILLY" 1)

  1. Emma’s Dilemma.

    As the number of letters increases so does the number of permutations. Now I have to find a pattern for the rise in combination numbers. I noticed that for a four-letter name there were four times the numbers of permutations than for a three-letter name.

  2. Emma's Dilemma

    This meant that a five lettered word with four repeats could be expressed as: 5! / 4! = 5 NUMBER OF POSSIBILITIES As this equation worked I came up with generalised equation for my new findings, which is: N! T!

  1. EMMA's Dilemma Emma and Lucy

    I expect the total arrangement is a=(1*2*3*4*5*6*7)/(3*2*1*4*3*2*1)=35 1112222 1222211 2222111 2211212 1121222 1222121 2221211 2211221 1122122 1222112 2221121 2212112-----10 arrangements 1122212 1221221-----15 arrangements 2221112 2212121 1122221 1221212 2211122 2212211 1212221 1221122 1212212 1212122 1211222 2111222 2112221 2121221 2122211 2112122 2121122 2122112 --------- 10 arrangements 2112212 2121212 2122121 Total arrangment is 35, the formular works.

  2. Emma's Dilemma

    repetitions remained anonymous 4 2 24 12 4 3 24 4 4 4 24 1 Part 3 My third and final task was to investigate the number of different arrangements for various groups of letters. I began by looking at the name "Abba".

  1. Emma's Dilemma Question One: Investigate the number of different arrangements of the letters

    I know my rule works for Four letters and below, and trying to write out the combinations of any number higher than this ( even 5 letters which would produce 120 different combinations ) would only waste time, and effort.

  2. I have been given a problem entitled 'Emma's Dilemma' and I was given the ...

    The arrangements of words with different letters had exactly double the arrangements of words with one repeated letter, both words having the same amount of letters. So when two words have the same amount of letters, one having totally different letters and one having one repeated letter, the one with

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work