• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Emma's Dilemma

Extracts from this document...


Emma's Dilemma Arrangements for Emma: emma emam eamm mmae mmea meam mema mame maem amme amem aemm There are 12 possibilities; note that there are 4 total letters and 3 different. What if they were all different like Lucy? Arrangements for Lucy: lucy ucyl cylu ycul luyc ucly cyul yclu lcuy ulcy culy yulc lcyu ulyc cuyl yucl lyuc uycl clyu ylcu lycu uylc cluy yluc There are 24 different possibilities in this arrangement of 4 letters all different. Double the amount as before with Emma's name, which has 4 letters and 3 different. I have noticed that with Lucy there are 6 possibilities beginning with each different letter. For example there are 6 arrangements with Lucy beginning with L, and 6 beginning with u and so on. 6 X 4 (the amount of letters) gives 24. What if there were 4 letters with 2 different? Arrangements for aabb: aabb abab baab abba baba bbaa There are 6 arrangements for aabb. ...read more.


With Lucy's name; 1x2x3x4 = 24. With qlucy; 1x2x3x4x5 = 120. However this is expressed as factorial. There is a button on most scientific calculators with have embedded this factorial button feature generally sowing as an exclamation mark. All it does is save the time of having to put in to the calculator 1x2x3x4x5x6x7..... Ect. You just put in the number and press factorial and it will do 1x2x3... until it get to the number you put in. If I key in (lets say the number of letters all different) factorial 6 I get it gives me 720, with makes sense because 720 divided by 6 equals 120 which was the number of arrangements for a 5 letter word and it continues to fall in that pattern. Total Letters (all different) Number of Arrangements 1 1 2 2 3 6 4 24 5 120 6 720 So now that I've explained the pattern of general x lettered words, what do I do if there are repeat letters? ...read more.


Formula = For example: A five letter word like aaabb; this has 3 a's and 2 b's (3 x's and 2 y's). So : 1x2x3x4x5 / 1x2x3 x 1x2 = 120 / 12 = 10 !!! A four letter word like aabb; this has 2 a's and 2 b's (2 x's and 2 y's) So : 1x2x3x4 / 1x2 x 1x2 = 24 / 4 = 6 !!! A five letter word like aaaab; this has 4 a's and 1 b (4 x's and 1 y) So: 1x2x3x4x5 / 1x2x3x4 x 1 = 120 / 24 = 5 !!! Five letter words like abcde; this has 1 of each letter (no letters the same) So : 1x2x3x4 / 1x1x1x1x1x1 = 24 / 1 = 24 All these have been proved in previous arrangements. This shows that my formula works !!! Total Letters Number Of X's Number Of Y's Number of Arrangements 3 2 1 3 4 2 2 6 5 2 3 10 6 2 4 15 3 3 0 1 4 3 1 4 5 3 2 10 6 3 3 20 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Emma's Dilemma

    - However, if we have a word such as Emma, consisting of E, M, M and A, we do the same thing, find all the combinations. So we would go through all the letters, on by one, E, then M, then M, and finally A.

  2. Emma's Dilemma

    If we look at LLLL (a 4-letter word) for example, the same letter (L) is repeated 4 times, and there is only 1 arrangement. LUCY (a 4-letter word with no letters repeated) has 24 arrangements. If we take each L in LLLL to be a different letter, by changing the colour of 3 of the Ls, we would get 24 different arrangements.

  1. Emma's Dilemma

    This meant that a five lettered word with four repeats could be expressed as: 5! / 4! = 5 NUMBER OF POSSIBILITIES As this equation worked I came up with generalised equation for my new findings, which is: N! T!

  2. Emma's Dilemma Question One: Investigate the number of different arrangements of the letters

    X 2 ! X 2 ! 8 This is due to the fact that the six different letters can be arranged in any order, and because all of them are different, it dose matter which order they go in. However, with more than one letter repeated more than once, the total number of arrangements is reduced

  1. Emma’s Dilemma

    x previous number of arrangements = total number of arrangements (A) Looking at any of the numbers of letters in names above can prove this prediction. L x previous number of arrangements = A e.g. 4 x 6 = 24 We see that this formula does work.


    So the formula is N! =A N= Number of letters ! = Number of arrangements for (N-1) A= Number of arrangements I worked out the formula, and now lets see if the formula works by doing another table and matching with the prediction table. Accurate table: Table 2 Number of letters Arrangements 1 letter 1

  1. Emma's Dilemma.

    observations I should be able to predict a when n is 5 having different letters. I shall use the name Ralph. Prediction for Ralph I can predict a for the name Ralph by looking at my observations from the table above.

  2. Emma's dilemma.

    C U Y C Y U Y C U Y U C C Y Y C Now I will investigate the same problem but using the name EMMA Part 2 Similar to what I did with Lucy, I will use the same systematic method and write out all of the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work