• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Fencing Problem

Extracts from this document...

Introduction

Fencing Problem - Math's Coursework

A farmer has exactly 1000 metres of fencing and wants to fence off a plot of level land. She is not concerned about the shape of the plot but it must have a perimeter of 1000 m. She wishes to fence off a plot of land that contains the maximum area. I am going to investigate which shape can provide her needs.

I am going to start by investigating the different rectangles; all that have a perimeter of 1000 meters. Below are 2 rectangles (not drawn to scale) showing how different shapes with the same perimeter can have different areas.

In a rectangle with a perimeter of 1000m, any 2 different length sides will add up to 500, because each side has an opposite with the same length. Therefore in a rectangle of 100m X 400m, there are two sides opposite each other that are 100m long and 2 sides next to them that are opposite each other that are 400m long. This means that you can work out the area if you only have the length of one side.

...read more.

Middle

30

14100

480

20

9600

490

10

4900

500

0

0

Using this table I can draw a graph of height against area. This is on the next sheet.

As you can see, the graph has formed a parabola. According to the table and the graph, the rectangle with a base of 250m has the greatest area. This shape is also called a square, or a regular quadrilateral. Because I only measured to the nearest 10m, I cannot tell whether the graph is true, and does not go up just to the sides of 250m. I will work out the results using 249m, 249.5 and 249.75.

Base (m)

Height (m)

Area (m2)

249

251

62499

249.5

250.5

62499.75

24975

250.25

6249993.75

250

250

62500

250.25

249.75

62499.9375

250.5

249.5

62499.75

251

249

62499

Using this table I can draw a graph of height against area. This is on the next sheet

All of these results fit into the graph line that I have, making my graph reliable. Also the equation that I used is a quadratic equation, and all quadratic equations form parabolas.

Now that I have found that a square has the greatest area of the quadirateral group, I am going to find the triangle with the largest area.

...read more.

Conclusion

As you can see from the graph, the line straightens out as the number of side's increases. Because I am increasing the sides by large amounts and they are not changing I am going to see what the result is for a circle. Circles have an infinite number of sides, so I cannot find the area using the equation for the other shapes. I can find out the area by using π. To work out the circumference of the circle the equation is πd. I can rearrange this so that diameter equals circumference/π. From that I can work out the area using the πr? equation.

DIAMETER = 1000 / π = 318.310

RADIUS = 318.310 / 2 = 159.155

AREA = π נ159.155? = 79577.472m?

My results:

Quadirateral: 62500m?

Triangle: 48107.689m?

Pentagon: 68819.096m?

Circle: 79577.472m?

From this I have concluded that a circle has the largest area when using a similar circumference. This means that the farmer should use a circle for her plot of land so that she can gain the maximum area.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. The Fencing Problem

    400 100 2) 400 100 3) 400 100 4) 400 100 5) 400 100 6) 400 100 7) 400 100 8) 400 100 9) 400 100 10) 400 100 = ^ We can see that the "symmetrical" data is very clearly being portrayed on the graph, and I have

  2. Fencing problem.

    found by dividing 3600 by the number of sides of the shape that has been shown above: Exterior angles = 3600 � Number of sides Exterior angles = 3600 � 6 Exterior angles = 600 I shall now find the interior angles of the above shape.

  1. Fencing Problem

    In order to do this I am going to construct a table so I can test the values around the dimensions of a square. Length of a.1 / a.2 Length of b.1 / b.2 Perimeter Area (m�) 249.8 250.2 1000 62499.96 249.9 250.1 1000 62499.99 250.1 249.9 1000 62499.99 250.2

  2. The Fencing Problem

    I'm starting by going up by 50m each time: BASE(m) HEIGHT(m) AREA(m�) 50 450 22500 100 400 40000 150 350 52500 200 300 60000 250 250 62500 300 200 60000 Already the area has started to decrease somewhere around the 200m-300m spot so I will zoom in to find a closer answer: BASE(m)

  1. Maths Coursework - Beyond Pythagoras

    So the rule for the Middle Side is....... 2n2 + 2n To check if this formula is correct I will apply it to the nth term. I should end up with the length of the middle side. Nth Term 2n2 2n 2n2 + 2n Middle Side The table proves that 2n2 + 2n is the rule for middle side.

  2. The Fencing Problem

    base of 333.5m, with sides of 333.25m long and a perimeter of 1000m. The area of this triangle is 48112.504m�. To work out the area of the triangle more accurately, I will change the base of the triangle in smaller steps of 0.1m.

  1. Fencing Problem

    Evaluating the Results Since the maximum value is obtained with a base measuring 333 1/3 then the remaining value is 666 2/3. Therefore, since an isosceles triangle has two sides equal then it means that all the three sides will have 333 1/3.

  2. History Coursework: Local Study, Stanton Drew Stone Circles

    However, if the line/lines of the avenues where continued then the avenues would meet and most probably merge into one avenue and head towards a significant area in the moument. If you look at the photo there is a flat area of land.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work