• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Fencing Problem - Maths Coursework

Extracts from this document...


Fencing Problem – Math’s Coursework

A farmer has exactly 1000 meters of fencing and wants to fence of a plot of level land. She is not concerned about the shape of the plot but it must have a perimeter of 1000 m. She wishes to fence of a plot of land that contains the maximum area. I am going to investigate which shape is best for this and why.

I am going to start by investigating the different rectangles; all that have a perimeter of 1000 meters.

...read more.

























Using this table I can draw a graph of height against area. This is on the next sheet.

As you can see, the graph has formed a parabola. According to the table and the graph, the rectangle with a base of 250m has the greatest area. This shape is also called a square.

Now that I have found that a square has the greatest area of the rectangles group, I am going to find the triangle with the largest area. I am only going to use isosceles triangles because if I know the base I can work out the other 2 lengths because they are the same. If the base is 200m long then I can subtract that from 1000 and divide it by two. This means that I can say that:

Side = (1000 – 200) / 2 = 400

To work out the area I need to know the height of the triangle. Tow ork out the height I can use Pythagoras’ Theorem.

...read more.


As you can see from the graph, the line straightens out as the number of side’s increases. Because I am increasing the sides by large amounts and they are not changing I am going to see what the result is for a circle. Circles have an infinite number of sides, so I cannot find the area using the equation for the other shapes. I can find out the area by using π. To work out the circumference of the cir le the equation is πd. I can rearrange this so that diameter equals circumference/π. From that I can work out the area using the πr² equation.

DIAMETER = 1000 / π = 318.310

RADIUS = 318.310 / 2 = 159.155

AREA = π × 159.155² = 79577.472m²

From this I have concluded that a circle has the largest area when using a similar circumference. This means that the farmer should use a circle for her plot of land so that she can gain the maximum area.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. GCSE Maths Coursework Growing Shapes

    20 D1 As there are all 4's in the D1 column, the formula contains 4n. Pattern no. (n) No. of outer vertices No. of outer vertices - 4n 1 4 0 2 8 0 3 12 0 4 16 0 5 20 0 Formula for number of outer vertices =

  2. Math Coursework Fencing

    The area of a parallelogram can be found by using the formula (Base multiplied by Height equals area). My prediction of the greatest area here, is that the closer the shape gets to a square the greater its area will be.

  1. The Fencing Problem

    90 400.00 1000 40000.00 100 400 100 393.92 1000 39392.31 100 400 110 375.88 1000 37587.70 100 400 120 346.41 1000 34641.02 100 400 130 306.42 1000 30641.78 100 400 140 257.12 1000 25711.50 100 400 150 200.00 1000 20000.00 100 400 160 136.81 1000 13680.81 100 400 170 69.46

  2. Maths Coursework: The Fencing Problem

    Meaning that the square with both sides equal has the biggest area in the category of the quadrilaterals. Regular Pentagon Now I'll try to find the area of a regular pentagon within a circle, therefore each length of the pentagon = 200m.

  1. Fencing Problem

    Isosceles 48112.51955 1000 metres 333.4 x 333.3 x 333.3 2nd largest triangle. The more narrowed down the closer dimension were to an equilateral Scalene 48112.50222 1000 metres 333.2 x 333.3 x 333.5 The smallest triangle amongst the other 2. The more narrowed down the closer the dimensions were to an

  2. Fencing Problem

    x 80 = Area = 79536m� 100-Sided Shape I am now going to look at a 100-sided Shape to find out its area when using 1000meters of fencing. Formula To Find the Area Of A 100 Sided Shape: Exterior Angle = 360� No.

  1. The Fencing Problem

    perimeter of 1000m), has a base length of 250m and a height length of 250m. On the next page is a line graph showing the relationship between the base and the area of the rectangles. It also shows that the rectangle with the base of 250m will have the largest

  2. Fencing problem.

    AC2 = AB2 + BC2 (416.67) 2 = (333.33) 2 + (250) 2 173608.9 = 111108.9 + 62500 173608.9 = 173608.9 Now it is certain that the triangle is a right hand triangle the area can be found. Area of triangle = 1/2 � Base � Height Area of triangle

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work