• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  • Level: GCSE
  • Subject: Maths
  • Word count: 1235

Find out the relationship of the dots inside a shape of different sizes.

Extracts from this document...

Introduction

DOTTY PATTERNS

AIM:         I have been set a task for my coursework to find out the relationship of the dots inside a shape of different sizes.

PLAN: I have planned to use a specific quadrilateral shape for my investigation in which lines will be 45o         (diagonal), one dot to the other; touching each others ends and being closed from all sides. I will be using         the following technique for my investigation. First of all I will commence with the shape-size being 1 cm2         increasing it every step by another 1 cm2. At the same time I will be counting the dots inside that         particular         shape. I will be using this method until I find a pattern; thereafter I will generate a suitable formula from that         pattern.

METHOD: I will be using more or less 5 diagrams and possibly the 6th one for my prediction.

DIAGRAM 1image03.png

AREA

DOTS

PERIMETER

1 cm2

1

4

image04.png

DIAGRAM 2

image07.png

AREA

DOTS

PERIMETER

2 cm2

5

8

DIAGRAM 3

image08.png

AREA

DOTS

PERIMETER

3 cm2

13

12

It seems that a pattern is forming for both. Firstly for the dots and area you add 4, there after you double the number, secondly for the perimeter you just add four at each level.

DIAGRAM 4

image09.png

AREA

DOTS

PERIMETER

4 cm2

25

16

DIAGRAM 5

image10.png

AREA

DOTS

PERIMETER

5 cm2

41

20

...read more.

Middle

2n2) + (-2n) + 1

        (2 x 42) + (-2 x 4) + 1

        32 – 8 + 1

        32 – 7 = 25

                        FORMULA CORRECT

TEST PREDICTION:

        ((2n2) + (-2n)) + 1

(2 x 62) + (-2 x 6) + 1

        (72 – 12) + 1

        60 + 1 = 61

My prediction was correct.

I can change the formula from ((2n2) + (-2n)) + 1 to ((2n2 - 2n)) + 1 because it makes no difference;

+ x - = -

AREA

DOTS in

perimeter

1 CM2 – 04

                > 04

2 CM2 – 08

                > 04

3 CM2 – 12

                > 04

4 CM2 – 16

                > 04

5 CM2 – 20

FORMULA FOR PERIMETER

As the number is doubling by four and there is only one difference I think that linear formula will be more suitable. So;

bn + c

        b= first difference

        n= any number of sequence

        c= output when input is zero

        4n + 0

Test formula:

        4x2 = 8           Formula correct

Test prediction:

        4x6 = 24        Prediction correct

SECOND INVESTIGATION:

The method I will be implying for my second investigation is that I will add 1cm on the length as well as on the width.

image11.png

        Diagram 1

image12.png

AREA cm

DOTS

PERIMETER

1x2

2

6

Diagram 2

image13.png

AREA cm

DOTS

PERIMETER

2x3

8

10

Diagram 3

image14.png

AREA cm

DOTS

PERIMETER

3x4

18

14

It looks like that after starting with 6, four is added each time. As for the perimeter 4 is added each time like you can see clearly.

Diagram 4

image05.png

AREA cm

DOTS

PERIMETER

4x5

32

18

Diagram 5

AREA cm

DOTS

PERIMETER

5x6

50

22

The comment I made before for the shape and area was wrong.

...read more.

Conclusion

Test prediction:

2n2

2x62

2x36 = 72         prediction correct

Formula for perimeter

AREA

cm

DOTS in

perimeter

0x1 – 02

             > 04

1x2 – 06

             > 04

2x3 – 10

             > 04

3x4 – 14

             > 04

4x5 – 18

             > 04

5x6 – 22

As the number is doubling by four and there is only one difference I think that linear formula will be more suitable. So;

bn + c

        b= first difference

        n= any number of sequence

        c= output when input is zero

        4n + 2

        Test formula:

        4n + 2

        4x3 + 2 = 14                formula correct

Test prediction:

4n + 2

4x6 + 2 = 26                prediction correct

EVALUATION:

I had a bit of problems in finding the formula for my second investigation, but I realised that the first part of the investigation appears to give the answer (2n2). I tested the formula and fortunately it worked. I was very pleased with it and it also gave me a tip for the next time I had to do the job; look closely at the formula.

CONCLUSION:

I came to the conclusion that the formulae are as follows:

        1stinvestigation:

                2n2 + 2n – 1                 for dots & areaimage00.png

                4n                        for dots in perimeterimage01.png

        2ndinvestigation:

                2n2for dots & areaimage01.png

                4n + 2                        for dots in perimeterimage02.png

Note:

                In the second investigation you can use the following formula to make things a bit                 simpler;

2d2

                As d equals to the width of a shape, so;

2d2

2x32 = 18

                Same goes for the formula for perimeter:

4d + 2

-END-

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. t shape t toal

    the formula for a 90� to the right T-Shape on any size grid. Although I should solve the full working out, I found that the formula 5T+7 could be worked for all grid sizes. Here is an example on a 3 by 3 grid size, which you could use: 1

  2. t shape t toal

    2 + 3 + 4 + 9 + 15 = 33 T + (T-6) + (T-11) + (T-12) + (T-13) = T-total Yes the formula does I will now simplify the formula. T + (T-6) + (T-11) + (T-12) + (T-13)

  1. t shape t toal

    47 To find the T total for any grid sizes the formula is 5x - (a multiple of 7) We should now try to find a general rule that works for a grid of any size. We can use the letter g to represent the grid size.

  2. Geography Investigation: Residential Areas

    This is probably because housing quality is getting better thus attracting more people that don't want to leave. Also, referring back to when I calculated spearman's rank it said there was a weak positive correlation for intangible factors (the main part of the hypotheses)

  1. Borders Investigation

    We know that the diameter is equal to , and therefore this is the length of the diagonal across the square. Using this, we can derive a formula for the area of the square in terms of n. Pythagoras' theorem tells us that is equal to (because l forms a

  2. Geographical Inquiry into the proposed redevelopment plan of the Elephant and Castle.

    The increased retailing will allow more opportunities for jobs to spend some of their spare time. The Elephant and Castle's Holistic approach is informed by the people's vision of providing individual opportunity, creating employment, improving health and education and enhancing living standards.

  1. I have been asked to find out the isoperimetric quotients of plane shapes using ...

    When I applied the I.Q formula to two different sized squares, I got the same answer. I will see if I would get the same I.Q for ANY sized square by using algebra: I.Q = 4? x area of shape (Perimeter of shape)

  2. Maths Dots Investigation

    Three dots inside shape. Number of dots joined Area(cm) 8 6 10 7 12 8 14 9 16 10 18 11 prediction 22 13 Rule-no. Of dots joined +2 2 Prediction-I predict that when 22 dots are joined, the area will be 13cm. My prediction was correct. Formula- D= no.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work