• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 1673

FINDING THE RELATIONSHIP BETWEEN THE T-NUMBER AND T-TOTAL USING DIFFERENT SIZED GRIDS.

Extracts from this document...

Introduction

AARUSHI MEHTA 10.3

T-TOTALS

FINDING THE RELATIONSHIP BETWEEN THE T-NUMBER AND T-TOTAL USING DIFFERENT SIZED GRIDS.

  1

  2

  3

   4

  5

  6

  7

  8

  9

 10

  11

 12

  13

 14

 15

 16

 17

  18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

This is a T-Shape taken from the 9x9 grid shown above.

  1

  2

  3

  11

 20

The T-Total of a T-Shape is all the numbers in that T-Shape added together.

For example:

When we add the numbers inside this T-Shape which are 1+2+3+11+20 it equals 37. Therefore, the T-Total of this T-Shape is 37.

The number at the bottom of the T-Shape is the T-Number. Therefore, the T-Number of this T-Shape is 20.

The relationships between the T-Number and other numbers in the T-Shape will be:

1

2

3

11

20

20-1=19                    20-2=18

       20-3=17                    20-11=17

To see if these results apply on every T-Shape on a 9x9 grid, I will find the results for another T-Shape on my 9x9 grid.

61

62

63

71

80

   80-61=19                 80-62=18

   80-63=17                 80-71=9

Since my results have been proven correctly, I will now work out a formula for any T-Shape on a 9x9 grid.

If I give my T-Number a letter (n) to represent it, the formula will be:

  1

2

3

11

11

20

n-19

n-18

n-17

n-9

n

=                                                  

*THIS FORMULA APPLIES ON ANY T-SHAPE ON A 9x9 GRID ONLY.*

image00.png

image00.png

After this, I decided to work out another formula for the T-Shape. This is the formula between the T-Total and T-Number.

...read more.

Middle

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

T-Total= N + N-21

+ N-20

+ N-19

+ N-10

= 5N-70.

This is the formula for finding the T-Total on a 10x10 grid.

N-21

N-20

N-19

   N-10

                           N

To find the relationship between the T-Shape T-Total and Grid Size:

N= T-Number

G = Grid Size

    NO. INSIDE

     T-SHAPE

     FORMULA

JUSTIFICATION

             5

        N-2G-1

      23-18-1

             6

        N-2G

      23-18

             7

        N-2G+1

      23-18+1

            14

        N-G

      23-10

            23

        N

      23

5

                           6

                           7

                           14

                           23

This T-Shape is

 taken from a

9x9 grid.

To prove these formulas, I’ll try them on T-Shapes from other sized grids.

    NO. INSIDE

     T-SHAPE

     FORMULA

JUSTIFICATION

             34

        N-2G-1

     51-16-1

             35

        N-2G

     51-16

             36

        N-2G+1

     51-16+1

             43

        N-G

     51-8

             51

        N

     51

34

                           35

                           36

                           43

                          51

1. This T-Shape is

taken from an     8x8 grid.

 31

                           32

                           33

                           42

                           52

    NO. INSIDE

     T-SHAPE

     FORMULA

JUSTIFICATION

             31

        N-2G-1

     52-20-1

             32

        N-2G

     52-20

             33

        N-2G+1

     52-20+1

             42

        N-G

     52-10

             52        

        N

     52

2. This T-Shape is    taken from a

 10x10 grid.

I HAVE FOUND THAT MY FORMULAS WORK ON ALL GRID SIZES.

i.e.8x8,9x9,10x10 ETC.

Now I have to find the general formula for all these formulas.

N-2G-1

                           N-2G

N-2G+1

                           N-G

                           N

    N-2G-1 + N-2G + N-2G+1 + N-G + N = 5N -7G.

To find the general formula, we have to add all the N’s i.e. 5N, and all the G’s i.e. 7G. Therefore, the formula is 5N-7G.

To prove this formula, I will use two grids.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

 This is a 5x5 grid.

2 + 3 + 4 + 8 + 13 = 30

 N=13 therefore 5N= 65

   G=5 therefore 7G= 35

65-35=30. This is the T-Total for my      T-Shape.

Now I will try this on a 6x6 grid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

8 + 9 + 10 + 15 + 21 = 63

N=21 therefore 5N = 105

G=6 therefore 7G = 42.

105-42=63. This is the T-Total for my T-Shape.

   I HAVE NOW PROVED THAT MY FORMULA WORKS.

VECTORS & TRANSLATIONS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

...read more.

Conclusion

 = (110-15) + 120 – 56 = 159

When I do this manually, 26 + 27 + 28 + 35 + 43 also equals 159.

Now I am going to try this on another sized grid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

EXAMPLE: 7x7 GRID

RED TOBLUE

image04.pngimage02.pngimage03.png

  (-3) x

  (-4) Y

5 x 20 + (5 x -3) – (5 x 7 x -4) – (7 x 7)

= (100-15) + 140 - 49 = 176

When I do this manually, 30 + 31 + 32 + 38 + 45 also equals 176.

I have now proved my formula and noticed that when the selected T moves horizontally, it increases or decreases by 1.  When it moves vertically, it increases or decreases by the grid size.

image05.png

Constraints

    What are constraints?

 Constraints are the maximum no. of spaces movable in a grid.

This is a table of constraints for different sized grids.

Grid Size

Constraint (max. no. of spaces movable)

3

0

4

1

5

2

6

3

7

4

8

5

9

6

10

7

11

8

Looking at this table I found two things.

  1. Each time the grid size increases by 1, so does the constraint.
  2.  In each case, the constraint is 3 less than the grid size (G).

image06.png

To prove my results, I have made four grids.

1

2

3

5

8

1. 3x3 Grid

There can’t be any movement in this T-Shape. Therefore, the constraint is 0.

1

2

3

image08.pngimage07.png

6

10

image10.png

2. 4x4 Grid

These arrows show that the T-Shape can move 1 place horizontally and 1 place vertically. Therefore, the constraint is 1.

1

2

3

image11.pngimage07.png

image07.png

image07.png

image07.png

9

16

image10.png

image10.png

image10.png

image10.png

  1. 7x7 GRID    

The arrows show that the T-Shape can move 4 places horizontally and 4 places vertically. Therefore, the constraint is 4.

  1. 11x11 GRID  

1

2

3

image13.pngimage07.png

image07.png

image07.png

image07.png

image07.png

image07.png

image07.png

image07.png

13

24

image10.png

image10.png

image10.png

image10.png

image10.png

image10.png

image10.png

image10.png

The arrows show that the T-Shape can move 8 places horizontally and 8 places vertically. Therefore, the constraint is 8.

image15.png

PAGE

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-totals. I am going to investigate the relationship between the t-total, T, and ...

    - (-1)(12) - 2 - 22} + 7 = 102 -2 2 -1 1 61 202 5 { 61 + (1)(-10) - (-1)(12) - 2 - 22} + 7 = 202 -2 2 1 -1 61 222 5 { 61 + (3)(-10)

  2. Objectives Investigate the relationship between ...

    108 +63 As you can see the increment was '+63' this allows me to build a simple formula. x = current T-total + 63 where 'x' is equal to the new T-total Therefore: x = 45 +63 x =

  1. T-shapes. In this project we have found out many ways in which to ...

    The next step is to move the shape on its side. Again we nearly keep the same formula as we had at the beginning. Again we change the minus number. We can work out the number to minus by working out the difference in the t-number to each number in the t-shape.

  2. T totals. In this investigation I aim to find out relationships between grid sizes ...

    We know with will not make a difference to the final answer as proved in question 2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

  1. T totals - translations and rotations

    The two remaining numbers in my T-shape are N-14-1 and N-14+1. Thus my T-total is: N+ (N-7) + (N-14) + (N-14-1) + (N-14+1)= 5N-49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

  2. In this investigation Im going to find out relationships between the grid sizes and ...

    Thus the above basic formula can be generated. If we say that 30 is n and n can be any T-Number, we get: t = n + n - 9 + n - 19 + n - 18 + n - 17 To prove this we can substitute n for

  1. Maths Coursework T-Totals

    width of 5, from this I can see a link with the "magic" numbers, as for as grid width of 5 it is 25, which is 5 x 5, and for a grid width of 9 it is 45 which is 9 x 5.

  2. The object of this coursework is to find the relationship between the total value ...

    I will then test my rule. 5) I will then move the T-Shape down the grid. I will start in the top left corner. 6) Next, I will move onto different grid sizes and repeat steps 1-5. 7) I will then try and find a general rule for the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work