• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10
11. 11
11
12. 12
12
13. 13
13
14. 14
14
15. 15
15
16. 16
16
17. 17
17
18. 18
18
19. 19
19
20. 20
20
21. 21
21
• Level: GCSE
• Subject: Maths
• Word count: 6878

# For other 3-step stairs, investigate the relationship between the stair total and the position of the stair shape on the grid. To start the investigation a 10x10-numbered grid square is used as illustrated below in table 1:

Extracts from this document...

Introduction

Mill Hill County High School Year 11 Mathematics GCSE Coursework EDEXCEL 2003, SYLLABUS 1387/1388 F, I & H Tejesh Patel Class 11H Assignment Part 1 Below is a 10x10 number grid: The total on the numbers coloured in blue = 90 (i.e. 1+11+12+21+22+23) Therefore the stair total in this 3-step stair = 90 Part 1 Objective: For other 3-step stairs, investigate the relationship between the stair total and the position of the stair shape on the grid. To start the investigation a 10x10-numbered grid square is used as illustrated below in table 1: From the complete 10 x 10 numbered grid square, we use part of it to carry out our initial investigation, for example the grid box on the right shows a slice of the 10 x 10 gird square, i.e. 6 boxes representing the numbers 1,11,12,21,22,23 (The 3-step stair) From this basic numbered square that looks like stairs or steps we can start to establish if there is a pattern. If a pattern is found then we can use an algebra equation to represent this pattern and use the equation for a 10 x 10 numbered Grid Square. By using the 3-step stair example we know there are [6] squares and lets assume in a 3-step stair the bottom grid box is equal to [x], therefore in our 3-step stair x = 21 Using the values in algebra the formula(s) would look like this: The 1st square = 1 then the formula is x - 20 = 1 The 2nd square = 11 then the formula is x - 10 = 11 The 3rd square = 12 then the formula is x - 9 = 12 The 4th square = 21 it is simply just x = 21 The 5th square = 22 then the formula is x + 1 = 22 The 6th square = 23 then the formula is x + 2 = 23 The above algebra equations are shown below in our 3-step stair: x - 20 x ...read more.

Middle

Therefore the algebra equation starts to look like this: 10 x - 10(n) and the next step is to test the equation; we will use 15 as the grid size. n = 15 and our 4-step grid numbers are 1,16,17,31,32,33,46,47,48,49 as shown below and x = 46: 1 16 17 31 32 33 46 47 48 49 Using the equation 10 x - 10(n) we can use the above values to see if the equation works (10 x 46) - (4 x 15) = 400 To check the equation is correct we added all the numbers: 1+16+17+31+32+33+46+47+48+49 = 320 Therefore 400 <> 320 and our equation is incorrect. The value from the equation is lower that the correct result, therefore we need to reduce n, and we can start this by 1 i.e. (n - 1). For example 10 x - 10 (n - 1) we can again test this using the above 3-step grid. (10 x 46) - (10 x (15 - 1) 460 - 140 = 320 320 = 320 therefore the result from our equation is the same as it is by adding up the numbers. From the steps we have taken we have formulated an algebra equation which when tested, gives us positive results in every case: THE GENERAL FORMULA IS: Five step stairs: 10 x 10 Grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 x-40 x-30 x-29 x-20 x-19 x-18 x-10 x-9 x-8 x-7 X X+1 ...read more.

Conclusion

+ 1] X (x) - [1 + (p - 1)/6 (p2 + 4p + 6)] X (n - 1) Where p is the number in a triangular grid, x = the value of the bottom left grid in the step stair and n = the size of the grid Taking our 16x16 grid example we can calculate the total number of the value for the step stair: P = 5 x = 133 n = 16 [[1/2 (5 x 5) + ((3 x 5)/2) + 1] X (x)] = 21x - [1 + ((5 - 1) ((5 x 5) + (4 x 5) + 6))/6 x (n - 1) = 35 (n - 1) = 21x - 35 (n - 1) = (21 x 133) - (35 x 15) = 2793 - 525 = 2268 To test the answer we add the numbers: 53+69+70+85+86+87+101+102+103+104+117+118+119+120+121+133+134+135+136+137+138 = 2268 This demonstrates that the universal formula works for any step stair, any numbered grid size and combination of numbers: We can do one more test using the same step stair, but starting the step at 104 as shown on the side Therefore: p = 2 because there are 6 squares i.e. 6n and x = 136 and n = 16 Using the universal formula we can calculate: [[1/2 (2 x 2) + ((3 x 2)/2) + 1] X (x)] = 6x - [1 + ((2 - 1) ((2 x 2) + (4 x 2) + 6))/6 x (n-1)=4(n - 1) = 6x - 4 (n - 1) = (6 x 136) - (4 x 15) = 816 - 60 = 756 Add the numbers: 104+120+121+136+137+138 = 756 The formula shows that no matter what the size of the step stair (i.e. number of squares), the position of the step stair (e.g. 1,11,12,21,22,23 or 81,82,83,91,92,93) and the grid size (e.g. 10x10, 25x25) the result will always be the total of the numbers in the step stair. This relationship is known as the "triangular numbers" GCSE Mathematics Course work Tejesh Patel, Class 11h Page 21 GCSE Mathematics Course work Tejesh Patel, Class 11h Page 2 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Number Stairs, Grids and Sequences essays

1. ## I am going to investigate the difference between the products of the numbers in ...

4 star(s)

And moving down one will add 10. +1 +1 +1 26 27 28 29 36 37 38 39 46 47 48 49 Using this, you can take any rectangle and begin to label all the sections within it in regards to one square.

2. ## I am going to investigate by taking a square shape of numbers from a ...

4 star(s)

Unfortunately, this formula does not work but if I minus the box size by one I will then get 10 which is the right answer. 10(b-1) � this is my new formula. I will test this formula on two box sizes I already have the results for: E.g.

1. ## In this coursework, I intend to investigate the differences of the products of the ...

3 star(s)

This is correct as from my previous working on a rectangle of these proportions I know that on a 10 x 10 grid the difference is 20 (10 x 2 !) For a 4 x 2 rectangle when the first square is X the difference is: The algebraic expression for

2. ## Number Grids Investigation Coursework

of 3 x 3 squares inside 9 x 9 grids: 15 16 17 24 25 26 33 34 35 (top right x bottom left) - (top left x bottom right) = 17 x 33 - 15 x 35 = 561 - 525 = 36 I will do another example of

1. ## Number Grid Investigation.

10(3 - 1) = 20. This was wrong as my intended answer was 40, not 20. I need to multiply the 10 by 4 somehow. So, I squared the (3 - 1) to get 4. 10 (3 - 1)� This worked. The formula for a 10 wide grid is: 10(width of square -

2. ## What the 'L' - L shape investigation.

By looking at all of the different grid sizes and their formulae. I can note that they all start with 5L; therefore, my final formula must consist of 5L. Grid Size Final Part Of The Formula Difference 4 by 4 -9 5 by 5 -12 6 by 6 -15 7

1. ## Number Stairs Maths Investigation

41 42 43 44 45 46 47 48 49 50 31 32 33 34 35 36 37 38 39 40 21 22 23 24 25 26 27 28 29 30 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 Fig.

2. ## Number Stairs

and it is constant. To see the difference more clearly I will put in diagram. (x) (t) Diff 1 14 0 2 17 3 3 20 3 4 23 3 5 26 3 6 29 3 So I think the formula for 2-Step Stairs will be (3)

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to