• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

GCSE Maths Coursework Module 4 Number grid

Extracts from this document...

Introduction

-GCSE Maths Coursework Module 4 Number grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 * A box is drawn round four numbers * Find the product of the top left number and the bottom right number in the box * Do the same with the top right and bottom left numbers * Calculate the difference between these products Investigate further. For my module 4 coursework, I have been given the above investigation to carry out. The grid size is 10 x 10 and the box inside is 2 x 2. The box covers four numbers where I have been instructed to find the product of the top left number and the bottom right number as well as the top right number and the bottom left number. ...read more.

Middle

an r x r box on a 10 x 10 grid: R X R box within a grid 10 numbers across: n n + 1 . . . n + r - 1 . . . n + 10 n + 1 +10 . . . n + r - 1 + 10 . . . . . . . . . . . . . . . . . . n + 10(r - 1) = n + 10r - 10 n + 1 + 10(r - 1) . . . n + r - 1 + 10(r - 1) = N + 11r - 11 . . . From this R x R box I have obtained the equation from the product of top right and bottom left: (n + 10r - 10) x (n + r - 1) I then expanded the brackets and eventually getting an expression containing six terms: n2 + 11nr - 11n + 10r2 - 20r + 10 (Equation 1) I then took the top left and bottom right and multiplied them together: n (n + 11r - 11) = n2 + 11nr - 11n (Equation 2) ...read more.

Conclusion

From the r X s box I the bottom left and top right and multiplied them together: (n + gs - g) x (n + r - 1) I then expanded these brackets to get 9 terms: n2 + nr - n + gsn + gsr - gs - gn - gr + g (Equation 1) Now I took the top left and bottom right and multiply these together: n (n + r + gs - g - 1) = n2 + nr + gsn - gn - n (Equation 2) If then (Equation 2) away from (Equation 1) and simplified it to get: gsr - gs - gr + g g(sr - s - r + 1) The expression in brackets again factorises so I now got: = g (r - 1)(s - 1) Here I have got the equation for the grid size. And changing numbers around will get you different results with this equation. If g=10 this formula becomes the same as the one calculated for the r x s box within a grid 10 numbers across. If g=10 and r=s this formula becomes the same as the one calculated for the r x r box within a grid 10 numbers across. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Marked by a teacher

    Mathematics Coursework: problem solving tasks

    3 star(s)

    My 4 x 3 has 2 sides measuring 4 tiles and 2 sides measuring 3 tiles. I am going to use the symbol H for height and W for width; T = 4 + 3 + 4 + 3 T = (W - 1)

  2. Investigate the number of winning lines in the game Connect 4.

    The table shows the results I tabulated from the grids I decide to alter the size of on the previous page. Height (h) Width (w) No. of winning lines h 2 2x as many h 3 3x as many h 4 4x as many h w wx as many If

  1. Number Grids Investigation Coursework

    D = wp2 (m - 1) (n - 1) (w = 8) (m = 4) (n = 5) (p = 3) = 8 x 32 (4 - 1) (5 - 1) = 8 x 9 x 3 x 4 = 864 I will draw an example of this rectangle in the same grid to check this

  2. Open Box Problem.

    of x, which gives this open box its maximum value, is 5. Notice that even though the ratio has gone form 1:3 to 1:4, the length (which is 20cm for both ratios) divided by 4 still gives the cut of x that gives this open box its maximum volume.

  1. Number Grid Coursework

    A graph is a good choice to show this relationship however, a straight line drawn between these would not be correct because with this particular problem, the values to be inputted into equations must be natural numbers i.e. Integers > 0.

  2. Investigation of diagonal difference.

    5 2 n n + 1 n + 4G n + 4G + 4 40 6 2 n n + 1 n + 5G n + 5G + 5 50 What Do I Notice? Horizontal cutouts I notice that the diagonal difference increases in increments of 10, so from this

  1. Algebra Investigation - Grid Square and Cube Relationships

    Top left number x (BF) Bottom right number = n(n+100d-100+sw+ghs-gs-s) = n2+100dn+100n+nsw+ghns-gns-ns Stage B: (TF) Bottom left number x (BF) Top right number = (n+ghs-gs)( n+100d-100+sw-s) = n2+100dn-100n+nsw-ns+ghsn+100dghs-100ghs+wghs2-ghs2-nsg-100dsg+100sg-gws2+gs2 = n2+100dn-100n+nsw+ghsn-nsg-ns+100dghs-100ghs+wghs2-ghs2-100dsg+100sg-gws2+gs2 Stage B - Stage A: (n2+100dn-100n+nsw+ghsn-nsg-ns+100dghs-100ghs+wghs2-ghs2-100dsg+100sg-gws2+gs2) - (n2+100dn+100n+nsw+ghns-gns-ns) = 100dghs-100ghs-100dgs+100gs+ghws2-ghs2-gws2+gs2 When finding the general formula for 10x10x10 cube dimensions, both

  2. Number stairs

    THE GENERAL FORMULA FOR ANY 3-STEP STAIR GRID SIZE IS: T=15x + 20 (n+1) SIX- STEP STAIRS: To start my investigation I am going to start by using a 10 by 10 Number grid below: Below is a portion of a 6 step- stair in algebraic terms: The total of

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work