I have been asked to find out the isoperimetric quotients of plane shapes using the formula: I.Q = 4ð x area of shape

Authors Avatar

Maths Coursework: Isoperimetric Quotients

I have been asked to find out the isoperimetric quotients of plane shapes using the formula:

I.Q = 4π x area of shape

(Perimeter of shape)₂

I will use the answers to find a pattern between the I.Qs of plane shapes. I will start with a circle as it only has one side, and then try other shapes increasing the number of sides each time.

To help me find a pattern I will make a table of results containing both the answers with π in it, and the answer worked out to a number to 2 decimal places.

     

 I.Q = 4π x area of shape

        (Perimeter of shape) ²

        = 4π x πr²

            (π d) ²

        = 4π x 12.566370614359172953850573533118

             157.91367041742973790135185599802

        = 157.91367041742973790135185599792

            157.91367041742973790135185599792

I.Q = 1

 I.Q = 4π x πr²

           (Πd) ²

     = 4π x 113.09733552923255658465516179806

             1421.2230337568676411121667039822

 = 1421.2230337568676411121667039814                                                                                                                                1421.2230337568676411121667039814

I.Q = 1

After trying the I.Q formula on 2 different sized circles, the I.Qs were the same. Using algebra, I will try and prove that the I.Q is the same for all circles:

I.Q = 4π x area of shape

       (Perimeter of shape) ²

      = 4π x πχ²

          (π2χ) ²

      = 4π x πχ²

      π² x 2² x χ²

     = 4π x πχ²

       π² x 4 χ²

    = π²χ²

      π²χ²

I.Q = 1

Therefore, the I.Q of a circle is always 1.

After finding the I.Q of a 1-sided shape, I will now see if the formula has the same effect on 3-sided shapes:

                                              

Height of triangle: sin60 = 0

                                              10

               Height = sin60 x 10

Area of triangle = ½ b x h

                          = 5 x sin60 x 10

                          = Sin60 x 5

I.Q = 4π x area of shape

        (Perimeter of shape) ²

       = 4π x sin60 x 50

                  900

       = 2π x sin60

                 9

       = 0.604599788

I.Q = 0.60 to 2.d.p

     

Height of triangle = sin60 x 200

Area = ½ b x h

         = 100 x sin60 x 200

         = Sin60 x 20000

I.Q = 4π x sin60 x 20000

                 36000

      = 2π x sin60

                 9

      = 0.604599788

I.Q = 0.60 to 2.d.p

Now I will try and prove using algebra that the I.Q of an equilateral triangle is always the same:

Height = sin60 x χ

Area = ½χ x sin60 x χ

         = ½ x χ² x sin60

I.Q = 4π x ½χ² x Sin60

            (3χ) ²

      = 4π x Sin60

          18

      = 2π x Sin60

               9

      = 0.064599788

      = 0.60 to 2d.p

From this I can see that the I.Q of a triangle will always be 0.60 to 2d.p.

Now I will move on to finding the I.Q of squares because they have 4 sides:

I.Q = 4π x area of shape

       (Perimeter of shape) ²

      = 4π x 4

             8²

                        = 4π x 4

                                     64

                               =

                                  16

          = π

                                  4

I.Q = 0.785398163

      = 0.79 to 2d.p      

I.Q = 4π x area of shape

          (Perimeter of shape) ²

       = 4π x 16

            256

       = π x 16

            64

       = π

          4

I.Q = 0.785398163

      = 0.79 to 2d.p

Using Algebra:

Again, I have noticed a pattern in my results. When I applied the I.Q formula to two different sized squares, I got the same answer. I will see if I would get the same I.Q for ANY sized square by using algebra:

Join now!

I.Q = 4π x area of shape 

      (Perimeter of shape) ²

     = 4π x χ

           (4χ) ²

     = 4π x 1

                                               16

                                        = π

                                        ...

This is a preview of the whole essay