• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  • Level: GCSE
  • Subject: Maths
  • Word count: 1264

Investigate the size of the cut out square, from any square sheet of card, which makes an open box of the largest volume.

Extracts from this document...

Introduction

Maths Coursework- The Open Box Problem Mary-Louise Duffy 11R Part 1 I am going to investigate the size of the cut out square, from any square sheet of card, which makes an open box of the largest volume. Firstly, I am going to do two investigations, using exact numbers, of this box so I can establish a connection between the size of the sheet and the size of the cut-out square. Then if I found out a similarity between the two, then I will use another example to prove my theory. This is a diagram of the of the box: C= Cut-out square size X= original length of card This is a formula to work out any volume, and I'm going to change it, so it's shows how to work out the volume of the card above: Volume = length x width x height V= (X-2C) x (X-2C) x C V= (X - 2C) Squared x C So the final formula to work out the volume of this box is: V= C(X-2C) squared This is my first investigation: 30cm by 30cm piece of card. ...read more.

Middle

divided by 3cm = 6 - That's same number I got in the last investigation, when I divided the length of the piece of card by the size of the square cut-out. My calculations tell me that the cut-out could be a sixth of the length of the card. (X) So my formula for working out the cut-out is Now, I'm going to prove my theory by doing a calculation. 30cm divided by 6 = C 5 = C My theory is correct, because in my first investigation, the 30cm by 30cm piece of card, the highest volume was produced by 5cm x 5cm square cut-out. Task 2 I'm going to investigate the size of the cut-out square, from any sized rectangular piece of card that makes an open box of the largest volume. As I did in the previous task, I will do two investigations and if I come up with a theory, I will prove it by doing another set of calculations. As I also did in the previous task, I will try to find a connection between the size of the square cut-out and the size of the rectangular piece of card it is being cut from. ...read more.

Conclusion

This is my third investigation: 40cm by 20cm piece of card In the table above, you can see the largest volume produced (1539.6cm cubed 2.d.p.) was by the 4.2222c, (recurring) sized square cut-out. As you may see in the table above, I checked around what I thought was the largest volume, and found out it wasn't the highest. So I kept on checking the decimals, until I realised that the volume would keep on continuously increasing as more 2's were added on the end of 4.222. Now I'm going to do my last set of calculations. 40cm divided by 4.22 (recurring)= 16.140351 20cm divided by 4.22 (recurring)= 4.7368421 4.22 (recurring) divided by 40cm= 0.1055555 4.22 (recurring) divided by 20cm= 0.2111111 When I first started this task, I thought there must be some kind of connection or relationship between the maximum volume square cut-out and the size of the piece of the card, as on the rectangle was only double the square. But I can't find it. But what I did notice was that on investigations 2 + 3, when you divided the size of the square cut-out by the width of the piece of card and you got the same number which was 0.1055555. So there must be some kind of connection but I am unable to find. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Open Box Problem.

    10 10 1600 17 8 8 1088 18 6 6 648 19 4 4 304 20 2 2 80 21 0 0 0 Volume = x(42-2x)(42-2x) As you can see the table above shows that the cut of x, which will give the maximum volume for the open box is 7.

  2. Algebra Investigation - Grid Square and Cube Relationships

    Because the second answer has +60 at the end, it demonstrates that no matter what number is chosen to begin with (n), a difference of 60 will always be present.

  1. Step-stair Investigation.

    as this remains the same it means that there will always be a triangle number at the total for each row. I then realised that by adding T1 to T4 together it gives the total 20. This is the number that occurs in the formula for a 5-step stair in the form of 20g+20.

  2. Number Stairs

    = 24 By substitution stair total= 24+24+1+24+2+24+3+24+9+24+10+24+11+24+18+24+19+24+27= 340 = T Now that I have accomplished my investigation on the 9x9 grid with 4 step stair case, I am going to the 4 step stair investigation on the 8x8 grid. Here we can see that, stair number=1 Stair total= 1+2+3+4+9+10+11+17+18+25= 100

  1. Mathematical Coursework: 3-step stairs

    19 20 21 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 73 74 75 76 77 78 79 80 81 64 65 66 67 68 69 70 71 72 55 56 57 58 59

  2. I will take a 2x2 square on a 100 square grid and multiply the ...

    = n�+40+22n (n�+40+22n) - (n� + 22n) = 40 Therefore the difference between the corners multiplied together will always be 40. Expanding the Task Further I now feel it will be interesting to look at a 4x4 number square on a 100 grid.

  1. "Multiply the figures in opposite corners of the square and find the difference between ...

    but to be 100% sure I need to use algebra to prove my theory. x x + 1 x + 2 x + 10 x + 11 x + 12 x + 20 x + 21 x + 22 x(x + 22)

  2. My task is to investigate a 2x2 box on a 100 square

    The right hand top corner will therefore be n+2 The left hand bottom corner will then be n+20 The corner diagonally across from it will be n+22 I will then times the corners together, like I did on the above examples.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work