• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10
11. 11
11
12. 12
12
13. 13
13
• Level: GCSE
• Subject: Maths
• Word count: 2813

# Investigating the relationship between the T-totals and the T-number.

Extracts from this document...

Introduction

Mathematics

G.C.S.E.

Course Work

T-Totals

By: Bharatjit Basuta

10kw

07/04/2004

Part One: I’ll be investigating the relationship between the T-totals and the T-number.

To show the relationship between T-totals and the T-numbers I will use a nine by nine grid to explain. There is a shape in the grid called the T-shape. This is shown below highlighted in the colour red.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

The number 20 at the bottom of the T-shape, this is called the T-number. All the other numbers highlighted in the T-shape are called the T-total.

For this T-shape

T-number = 20

T-total = 37

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

For this T-shape

T-number = 21

T-total = 42

After viewing the information that every time the T-number goes up one the T-total goes up by five. So in this case the ratio between the T-number and the T-total is 1:5. This can help me because when I want to translate a T-shape that is in another position. For instance when I the T-shape here.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

For red T-shape

T-number = 20

T-total = 1+2+3+11+20 = 37

For Orange T-shape

T-number = 74

T-total = 55+56+57+65+74 = 307

I all ready know the answer to the red T-shape from the previous work that I did. To work out the orange T-shape I will have to work out the difference of the T-number. In this case it is 54 (74-20). Then I will times the 54 by 5 because the T-total rises by 5 ever time the T-number goes up by one.

Middle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

5x78-63 = T-total

5x78-63 = 327

Checking…

59+60+61+69+78 =327

As show the formula works because I have found the relationship between T-totals and T-numbers for the.

Part Two: I’ll be using grids of different sizes and then translate the T-shape in to different positions. Then ill investigate the relationship between the T-total, T-number and the grid size.

Here I am doing what I did in part one. This time ill be finding out more about the grid sizes and what they are capable of doing.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

For this T-shape (11x11 Grid)

T-number = 24

T-total = 1+2+3+13+24 = 43

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

For this T-shape (9x9 Grid)

T-number = 20

T-total = 1+2+3+11+20 = 37

Even though T-shape looks to be in the same place the T-total and the T-number have risen. The T-number has risen by four and the T-total has risen by six. If I use the same rules I made in the part one I will get a new formula for the new size grid.

Using the long method

24-1 = 23

24-2 = 22

24-3 = 21

24-13 = 11

TOTAL = 77

Shorter method

7* 11 = 77

Multiply by eleven because that is the grid size

New formula

5T-number-77 = T-total

5x24-77 = 43

The same formula works with only changing the last number in the formula. Now I will try the same method on a smaller grid size to make sure that my method doesn’t only work when the grid size gets bigger.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T-number = 10

T-total = 1+2+3+6+10 = 22

7x4 = 28

Multiply by four because that is the grid size

5T-number-28 = T-total

5x10-28 = 22

By changing the size of the grids I‘ve learned that there is an overall formula for any size grid to find the T-total. This formula is 5T-number-7G-number. I found this formula out by combining the formula which I used to find the difference of the T-number with the formula that I’ve been using with the other grids. This formula is shown below.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Conclusion

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

12-1 =11

12-10= 2

12-19= -7

12-11 = 1

TOTAL = 7

Formula

5T-number – 7 = T-total

5x12 - 7= 53

Checking…

T-number = 12

T-total = 1 +10 +19 +11 +12 = 53

This formula has worked. Now if I rotate the t-shape 180 degrees, the same will happen, as what happened when the T-shape when it was turned 180 degrees from its first original position. To prove this it will be shown below.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

5T-number + 7 = T-total

5x70 + 7 = 357

Checking…

T-number = 70

T-total = 70+71+72+63+81 = 357

Now that I have worked out all the formulas for the position in the normal sized T-shape. No I’m going to enlarging the T-shape. I will double the T-shape. The new shape is shown below on the 9x9 grid. I have added the numbers together in the squares of the T-shape. This leaves me with my original T-shape but with larger numbers in the grid.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

176-24(1+2+10+11) = 152

176-32(3+4+12+13) = 144

176-40(5+6+14+15) = 136

176-104(21+22+30+31) = 72

TOTAL= 504

I have the rest of the formula. The formula is identical apart from the number we minus or plus.

Formula

5T-number –504 = T-total

5x176-504 = 376

I have proven that the formula works

Conclusion

In conclusion I have learned that in this project I have found out many ways in which to solve the problem I have with the T-shapes being in many different positions with different many sizes of grids. The way I have made the calculations of this project less difficult is was by creating a many main formulas that change for all the different circumstances.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE T-Total essays

1. ## Maths GCSE Coursework &amp;amp;#150; T-Total

and g (grid size); x-(2g-1) x-2g x-(2g+1) x-g x In addition, from this we can simplify the above and generate the formula of:. t = 5x - (g � 7 ) t = 5x - 7g As we have taken 5x (the number of numbers), from that we take the

2. ## T-totals. I am going to investigate the relationship between the t-total, T, and ...

+ 7g. Rotation of 270� clockwise/ 90� anticlockwise about an external point The t-total of any t-shape that has been rotated 270� clockwise or 90� anticlockwise about an external point is given by (T = t-total, n = t-number, g = grid size): T = 5 ( n + c - dg +d +cg )

1. ## Objectives Investigate the relationship between ...

direction; the T-number remains the same, '19', but the T-total will change. * T19 No rotation 2 3 4 11 19 2+3+4+11+19=39 * T19 90� rotation 11 12 13 19 20 21 27 28 29 13+21+29+20+19=102 T-shape T-total Increment T19 39 T19 (90�)

2. ## T-Shapes Coursework

Where n = 29 and l = 8 Total Sum = = = = Total Sum = = = = = = Wing + Tail [28 + 29 + 30] + [39 + 49 + 59 + 69 + 79 + 89 + 99 + 109] [87]+ [592] 679 3n

1. ## For my investigation, I will be investigating if there is a relationship between t-total ...

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 T-total = (N-29)+(N-28)+(N-27)+(N-14)+(N)

2. ## For my investigation, I will be investigating if there is a relationship between t-total ...

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 T-total = (N-23)+(N-22)+(N-21)+(N-11)+(N)

1. ## T-shapes. In this project we have found out many ways in which to ...

in this t-shape Working Out: - 70-51=19 70-52=18 70-53=17 70-61=9 TOTAL=63 Again the number turns out to be 63. This is where the 63 came from in this equation. There is also another place this 63 comes from. This is 9*7=63.

2. ## T-Total. I will take steps to find formulae for changing the position of the ...

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to