• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  • Level: GCSE
  • Subject: Maths
  • Word count: 1416

Investigation to find out the number of matchsticks on the perimeter in a matchstick staircase using the GENERAL RULE.

Extracts from this document...

Introduction

Mary Anitha Edward Antony

Matchsticks Coursework

Introduction

This investigation is based on the ‘number sequence’ and I am going to make further more matchstick staircases for this investigation.

Investigation to find out the number of matchsticks on the perimeter in a matchstick staircase using the GENERAL RULE.

I have drawn 6 matchstick staircases on the graph paper and I am going to put the number of matchsticks on the base, number of matchsticks on the perimeter, total number of matchsticks in a table based on the 6 matchstick staircases.

Table to show the number of matchsticks on the base, on the perimeter and the total number of matchsticks.

Number of matchsticks on the base

Number of matchsticks on the perimeter

Total number of matchsticks

1

4

4

2

8

10

3

12

18

4

16

28

5

20

40

6

24

54

And I’m going to make another table to find out the differenceonperimeter from the number of matchsticks on the perimeter.

Number of matchsticks on base

1

2

3

4

5

6

Number of matchsticks on perimeter

    4            8           12          16          20          24

           4            4            4            4            4

Perimeter difference

From this table I’m going to make a general rule, in terms of letters.

Number of matchsticks on perimeter = P

Number of base = b

Perimeter difference = 4 (always)

...read more.

Middle

1st difference

2nd difference

When the 1st difference is not the same but the 2nd difference is, the formula will follow the quadratic pattern:

t = an2 + bn + c

But I am going to use different letters.

t = total; b = base

t = xb2 + yb + c

x is the coefficient of the 1st term and is always ½ the 2nd difference.

So in my example x is ½ of 2 = 1.

∴My formula will begin with 1b2 = b2.

To find ‘c’ I have to find the value of t, when b = 0. So I am going draw another table.

B

0

1

2

3

4

5

6

t

    0            4          10          18          28         40         54

4            6           8           10          12         14

                  2            2            2            2           2

1st difference

2nd difference

In my table when b = 0, t = 0 so c = 0.

Now I have to find the value of ‘y’.

x + y + c = the value of t when b = 1 (from the table)

x + y + 0 = 4

1 + y + 0 = 4

y = 3

So my formula should be:

b2 + 3b = t

Now I am going to test my formula:

Example 1: when b = 6; t = 54

b2 + 3b = t

62 + 3(6) = 54

36 + 18 = 54

I am going to try another example to make sure whether my formula is right or not.

Example 2: when b = 2; t = 10

b2 + 3b = t

22 + 3(2) = 10

4 + 6 = 10

Therefore I would say my formula is right and using this formula I will predict that the total number of matchsticks in the diagram when the base is 9 is:

b2 + 3b = t

92 + 3(9) = t

81 + 27 = 108.

Introduction

I am going to do another investigation to find out the matchsticks on the perimeter and the total number of matchsticks in a double matchstick staircase. I have drawn four diagrams (see the graph attached).

Investigation to find out the number of matchsticks on the perimeter in a double matchstick staircase using the GENERAL RULE.

Table to show the number of rows, number of matchsticks on perimeter and the total number of matchsticks.

r = number of rows; P = number of matchsticks on perimeter; t = total number of matchsticks

r

P

t

1

4

4

2

10

13

3

16

26

4

22

43

...read more.

Conclusion

t = ar2 + br + c

But I am going to use different letters.

t = total; r = rows

t = xr2 + yr + c

x is the coefficient of the 1st term and is always ½ the 2nd difference.

So in my example x is ½ of 4 = 2.

∴My formula will begin with 2r2.

To find ‘c’ I have to find the value of t, when r = 0. So I am going draw another table.

R

0

1

2

3

4

t

   -1           4          13          26          43        

5            9          13         17          

                 4            4           4      

1st difference

2nd difference

In my table when r = 0, t = -1 so c = -1.

Now I have to find the value of ‘y’.

x + y + c = the value of t when r = 1 (from the table)

x + y + -1 = 4

2 + y + -1 = 4

y = 3

So my formula should be:

2r2 + 3r -1 = t

Now I am going to test my formula:

Example 1: when r = 3; t = 26

2r2 + 3r -1 = t

2(3)2 + 3(3) -1 = 26

2(9) + 9 -1 = 26

18 + 9 -1 = 26

I am going to try another example to make sure whether my formula is right or not.

Example 2: when r = 4; t = 43

2r2 + 3r -1 = t

2(4)2 + 3(4) -1 = 43

2(16) + 12 -1 = 43

Therefore I would say my formula is right and using this formula I will predict that the total number of matchsticks in the diagram when the rows are 9 is:

2r2 + 3r -1 = t

2(9)2 + 3(9) -1 = t

2(81) + 27 -1 = 188.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing investigation.

    Triangles Scalene 350m 200m a b 450m c As we already know everything there is to know to find the area of this triangle, the procedure is therefore very simple. The scalene triangle heights don't need to be solved to work out their areas; all that is needed is one simple formula.

  2. Perimeter Investigation

    In a regular pentagon each equal side would be = 1000 / 5 = 200m Using TAN = h / 100 = tan 54 h = 100tan54 = 137.6 Area = 1/2 * 200 * 137.6 = 13760 Area of 5 triangles = 13760 * 5 = 68 800m In

  1. Maths Investigation on Trays.

    (18-2x)2 = 4(18-2x)x (18-2x)(18-2x) = 4x(18-2x) (18-2x) (18-2x) 18-2x = 4x 18= 4x + 2x 18= 6x so x must equal 3. As you can see by the results the formulae was correct in finding when the max volume will occur. I will see if this formula works for the other trays.

  2. Borders Investigation

    Looking at our table, it is quickly obvious that each perimeter is equal to n multiplied by four; that is, . n 0 1 2 3 Perimeter 0 4 8 12 If we divide the perimeter of a cross by four to obtain a single side, we can see why this formula works.

  1. t shape t toal

    t = 5x - 21 is the formula for a 3 by 3 grid. To find the number that you take away by you look at all the multiples of 7, in this case it is 3 or represented as the g for grid size.

  2. Geography Investigation: Residential Areas

    model I am going to extrapolate from my data I have already collected some other data that will allow me to calculate the average area rating of this street. When I have made my own prediction of what the average area rating should be I will then survey the area with a questionnaire.

  1. Koch’s Snowflake Investigation

    Shape Number Number of Small Triangles Area of Smallest Triangle Area added on 1 1 81 81 2 3 9 27 3 12 1 12 4 48 1/9 5? 5 192 1/81 2.37037 Using my experience from working out the perimeter, I know that the area added on is increasing by with each shape.

  2. Biological Individual Investigation What Effects Have Management Had On Grasses In Rushey Plain, Epping ...

    It forms loose tufts in woods, and other shady places, as well as forming large populations in open grassland. After looking at possible factors affecting the grass height, I decided that it was one of two possibilities. Either trampling, which would stop the grasses being able to spread their roots, or a natural process.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work