• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  • Level: GCSE
  • Subject: Maths
  • Word count: 1416

Investigation to find out the number of matchsticks on the perimeter in a matchstick staircase using the GENERAL RULE.

Extracts from this document...

Introduction

Mary Anitha Edward Antony

Matchsticks Coursework

Introduction

This investigation is based on the ‘number sequence’ and I am going to make further more matchstick staircases for this investigation.

Investigation to find out the number of matchsticks on the perimeter in a matchstick staircase using the GENERAL RULE.

I have drawn 6 matchstick staircases on the graph paper and I am going to put the number of matchsticks on the base, number of matchsticks on the perimeter, total number of matchsticks in a table based on the 6 matchstick staircases.

Table to show the number of matchsticks on the base, on the perimeter and the total number of matchsticks.

Number of matchsticks on the base

Number of matchsticks on the perimeter

Total number of matchsticks

1

4

4

2

8

10

3

12

18

4

16

28

5

20

40

6

24

54

And I’m going to make another table to find out the differenceonperimeter from the number of matchsticks on the perimeter.

Number of matchsticks on base

1

2

3

4

5

6

Number of matchsticks on perimeter

    4            8           12          16          20          24

           4            4            4            4            4

Perimeter difference

From this table I’m going to make a general rule, in terms of letters.

Number of matchsticks on perimeter = P

Number of base = b

Perimeter difference = 4 (always)

...read more.

Middle

1st difference

2nd difference

When the 1st difference is not the same but the 2nd difference is, the formula will follow the quadratic pattern:

t = an2 + bn + c

But I am going to use different letters.

t = total; b = base

t = xb2 + yb + c

x is the coefficient of the 1st term and is always ½ the 2nd difference.

So in my example x is ½ of 2 = 1.

∴My formula will begin with 1b2 = b2.

To find ‘c’ I have to find the value of t, when b = 0. So I am going draw another table.

B

0

1

2

3

4

5

6

t

    0            4          10          18          28         40         54

4            6           8           10          12         14

                  2            2            2            2           2

1st difference

2nd difference

In my table when b = 0, t = 0 so c = 0.

Now I have to find the value of ‘y’.

x + y + c = the value of t when b = 1 (from the table)

x + y + 0 = 4

1 + y + 0 = 4

y = 3

So my formula should be:

b2 + 3b = t

Now I am going to test my formula:

Example 1: when b = 6; t = 54

b2 + 3b = t

62 + 3(6) = 54

36 + 18 = 54

I am going to try another example to make sure whether my formula is right or not.

Example 2: when b = 2; t = 10

b2 + 3b = t

22 + 3(2) = 10

4 + 6 = 10

Therefore I would say my formula is right and using this formula I will predict that the total number of matchsticks in the diagram when the base is 9 is:

b2 + 3b = t

92 + 3(9) = t

81 + 27 = 108.

Introduction

I am going to do another investigation to find out the matchsticks on the perimeter and the total number of matchsticks in a double matchstick staircase. I have drawn four diagrams (see the graph attached).

Investigation to find out the number of matchsticks on the perimeter in a double matchstick staircase using the GENERAL RULE.

Table to show the number of rows, number of matchsticks on perimeter and the total number of matchsticks.

r = number of rows; P = number of matchsticks on perimeter; t = total number of matchsticks

r

P

t

1

4

4

2

10

13

3

16

26

4

22

43

...read more.

Conclusion

t = ar2 + br + c

But I am going to use different letters.

t = total; r = rows

t = xr2 + yr + c

x is the coefficient of the 1st term and is always ½ the 2nd difference.

So in my example x is ½ of 4 = 2.

∴My formula will begin with 2r2.

To find ‘c’ I have to find the value of t, when r = 0. So I am going draw another table.

R

0

1

2

3

4

t

   -1           4          13          26          43        

5            9          13         17          

                 4            4           4      

1st difference

2nd difference

In my table when r = 0, t = -1 so c = -1.

Now I have to find the value of ‘y’.

x + y + c = the value of t when r = 1 (from the table)

x + y + -1 = 4

2 + y + -1 = 4

y = 3

So my formula should be:

2r2 + 3r -1 = t

Now I am going to test my formula:

Example 1: when r = 3; t = 26

2r2 + 3r -1 = t

2(3)2 + 3(3) -1 = 26

2(9) + 9 -1 = 26

18 + 9 -1 = 26

I am going to try another example to make sure whether my formula is right or not.

Example 2: when r = 4; t = 43

2r2 + 3r -1 = t

2(4)2 + 3(4) -1 = 43

2(16) + 12 -1 = 43

Therefore I would say my formula is right and using this formula I will predict that the total number of matchsticks in the diagram when the rows are 9 is:

2r2 + 3r -1 = t

2(9)2 + 3(9) -1 = t

2(81) + 27 -1 = 188.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing investigation.

    Triangles Scalene 350m 200m a b 450m c As we already know everything there is to know to find the area of this triangle, the procedure is therefore very simple. The scalene triangle heights don't need to be solved to work out their areas; all that is needed is one simple formula.

  2. t shape t toal

    t = (17 + 0) + (17 + 1) + (17 + 2) + (17 - 3) + (17 + 7) So if we substitute 17 with r we get: t = r + (r + 1)

  1. Geography Investigation: Residential Areas

    I have purposely not collected data from this area. My last hypothesis explains in more detail why I have done this. On the next few pages are blank copies of my different surveys, The 'Internal' and 'External' respectively. I have annotated them outlining why I have asked this question and to what hypothesis it relates to - I have

  2. Koch’s Snowflake Investigation

    I may need to use this common ratio in equations later on. By adding up the areas added on, I can now work out the total area of each snowflake. Shape Number Total Area 1 81 81 2 81 + 27 108 3 81 + 27 + 12 120 4 81 + 27 + 12 + 5?

  1. Borders Investigation

    The length of one side is exactly the same as n: The length of one side must then be multiplied by 4 to give the perimeter, and hence, . Area We can apply the same procedure we used for perimeter to area.

  2. Tubes Investigation

    = Volume 1 X 11 X 32 = 352cm( 2 X 10 X 32 = 640cm( 3 X 9 X 32 = 864cm( 4 X 8 X 32 = 1024cm( 5 X 7 X 32 = 1120cm( 6 X 6 X 32 = 1152cm( 7 X 5 X 32 =

  1. Perimeter Investigation

    (Here will be a graph for Base/Area and another graph for sides/perpendicular height) From the triangle exercise, I have determined that the shape with equal sides gives the maximum area. Therefore I will continue the relationship between the sides and the area enclosed by them.

  2. Biological Individual Investigation What Effects Have Management Had On Grasses In Rushey Plain, Epping ...

    + Light + Carbon Dioxide � Glucose + Oxygen The carbon from the carbon dioxide is used to build up complex organic molecules, which are used to build up cell components, and enable the plant to grow. Photosynthesis relies on the following conditions: * Light * Water * Carbon Dioxide

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work