• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Mathematics Coursework - T Shapes

Extracts from this document...

Introduction

2. Translate the T-shape to different positions.

Using a grid of any size, I will investigate how the original T-number is related to the T-total of the translated T-shape. First, I will use

...read more.

Middle

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

image01.png

image02.png

Here is a table showing the results so far for the different grid sizes, t-numbers, t-totals and the vector.

Vector ((a,b))

(3,0)

(2,0)

(1,0)

Grid Size (g)

9x9

8x8

6x6

Original T-number (n)

20

18

14

Original T-total

37

34

28

Final T-number

23

20

15

Final T-total (T)

52

44

43

image03.png

From this table I can see a pattern. It shows that when you take an Original T-total (37) and add on 5 times the vector a (3) you get the final T-total. In equation form this is:
Final T-total = Original T-total + (5xMovement in Horizontal Direction)
However this equation requires us to know the T-total In advance when we only know the T-number. So I can substitute a previous equation for the Original T-total (5n-7g). This gives me the final equation of:
Final T-total = (5n-7g)+(5a)

Therefore, I have a final formula of:
(T=Final t-total) (n=original T-number) (a=the horizontal direction on the vector)

T = (5n-7g)+5a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

...read more.

Conclusion

wspan="1">

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

Justification
To prove that this formula will always work with any grid size and any T-shape using a horizontal vector I can use this T-shape, Grid and vector:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15image05.png

6

17

18

19

20

21

22

23

24

25

                                
                   First T-shape                                           Final T-shape         

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-Shapes Coursework

    With these "T"s, in 5 different locations on the width 20 grid, the Total Sum will be calculated. Width 20 must be used for this section because when varying the widths of "T", the grid must be wide enough to give a good range of values for data collection, and later testing.

  2. T-Shapes Coursework

    analyzing our findings, and finding any relationships or patterns within these figures. Verticals 1st T-Shape 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

  1. T totals. In this investigation I aim to find out relationships between grid sizes ...

    15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

  2. T totals - translations and rotations

    The two numbers remaining in my T-shape are N-14-1 and N-14+1. Thus my T-total is: N+ (N-7) + (N-14) + (N-14-1) + (N-14+1) = 5N-49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

  1. T-Total Maths coursework

    are: Formula: T=5N+56 N= 2 3 4 5 T= 66 71 76 81 N=2 T-number T= (5 x 2) + 56 = 10 + 56 = 66 T-total This equation has produced its first correct answer. I will carry on and test T-shape I know N = 3 T = (5 x 3)

  2. Maths Coursework T-Totals

    42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 If we take this 8x8 grid with a T-Number of 36 we get the T-Total of 124 (36 + 28 + 20 + 19 + 21), if

  1. T-Total Coursework

    187 The following shows a T-Shape with the used formula to explain what the formula for each number is when we have the T-Number. N - 2G - 1 N - 2G N - 2G +1 N - G N PART 2 This next section involves using grids of different sizes and then translating the T-Shape to different positions.

  2. Maths- T-Totals

    +9 +45 74 55+56+57+65+74= 307 +9 +45 Formula Expressed in the nth term As the tables show every time the T-Number increases by 9 the T-Total increases by 45. I will express in the nth term by using these common differences and start on the basis of 'if n=1' but change accordingly if appropriate.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work