• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  • Level: GCSE
  • Subject: Maths
  • Word count: 1208

Maths algerbra

Extracts from this document...

Introduction

Maths coursework

In  this coursework we were asked to find the differences in a simple fraction pattern. We had ;

Number

1

2

3

4

5

6

7

Fraction

1/2

2/3

3/4

4/5

5/6

6/7

7/8

I will look at the differences between the fractions and search  for any general rules. I will apply my good algebraic skills to help find any rules.

I then had to find the differences by taking the fractions away from each other. To find my first difference I had to ;

D1 = difference one

Fraction         2nd-1st                 3rd-2nd                4th-3rd

D1                  1st                               2nd                              3rd

I had to take away 2/3 form  1/2 but the  denominators were not the same, so I found the lowest common multiple  from each and multiplied them top and bottom eg.

X2   2   -     1   X3image01.pngimage00.pngimage01.png

X2   3         2   X3

        The lowest common  multiple is 6 so I multiplied  2/3 by 2 and 1/2 by 3. I then got ;

4/6 -  3/6 which then equalled 1/6, which was my 1st difference.

I done the same to 3/4 -  2/3             9/12 – 8/12 which equalled 1/12 and my second difference.image14.png

...read more.

Middle

nd – 3rd                 3rd   – 4th

D2           1st                               2nd                               3rd

I then looked for the nth term in the second difference, I had to take the nth term away from the n + 1th  term and so I …

            1          -           1                

  (n+1)(n+2)       (n+2)(n+3)   image02.pngimage02.png

X (n + 3)             1      -           1                 X  (n + 1)image15.pngimage02.png

X (n + 3)  (n+1)(n+2)       (n+2)(n+3)   X  (n + 1)  image09.png

            1X (n+3)                         -    1 X  (n + 1)

image16.pngimage17.png

(n + 1)(n+2)(n+3)       (n + 1)(n+2)(n+3)   image09.png

X

n

3

1

n

3

X

n

1

1

n

1


image18.png

        (n + 3) – (n + 1)image19.png

        (n + 1) (n+2)(n+3)       image20.png

        which cancelled to

image07.pngimage07.png

                                        (n + 3)  - (n + 1)image22.pngimage22.png

image23.png

        (n + 1)(n+2)(n+3)       image24.png

        2

image16.png

                   (n + 1)(n+2)(n+3)

I tested this by using n = 3

                                    2

image16.png

                   (3 + 1)(3+2)(3+3)

image25.png

                                2

image26.png

                                                       4 X 5 X 6

image20.png

        2

image26.png

                                                                                     120image25.png

image28.png

        1image26.png

                                                                                                         60image29.png

This is the 3rd difference in the second difference line.

I went on to find the 3rd difference.

Number

1

2

3

4

5

n

n+1

D2

1/12

1/30

1/60

1/105

2/(n+1)(n+2)(n+3)

2/(n+2)(n+3)(n+4)

D3

1/20

1/60

1/60

1/140

I found this by taking the nth term away from the n+1th term ;

             2                                             2        image30.pngimage30.pngimage30.png

(n+1)(n+2)(n+3)         -       (n+2)(n+3)(n+4)

I had to make the denominators the same so I …

...read more.

Conclusion

X1

X2

X3image07.png

                X4
image40.png

I predicted that the numorator would be 4 times more then the previous numerator because of the patten forming (24), I also predicted the denominator be times by one more then the number difference. To check this I had to test it I put n = 1

image07.png

         ??        ??        12        24image41.png

2 X 3 X 4 X 5 X 6                         3360        3360        720image42.pngimage43.pngimage42.pngimage43.pngimage43.pngimage03.png

        1

        30

                                                                     this 1makes my prediction right

I went on to find dk I predicted it to be

   1 X 2 X 3 X 4… X k

(n+1)(n+2)(n+3)(n+4)…(n+1+k)

I proved this by ;

Numerator

Difference

D  1

D  2

D  3

D  4

D  k

fraction

1

1X  2

1X2X 3

1X2X3X 4

1X2X3X 4…X k

numerator

1

2

6

24

1X2X3X4..Xk

The difference number was the last consecutive number multiplied to get the numerator

Denominator

Difference

D  1

D  2

D  3

D  k

Actual fraction

(n+1)(n+2)

(n+1)(n+2)

(n+3)

(n+1)(n+2)

(n+3)(n+4)

(n+1)(n+2)

(n+3)(n+4)

…(n+K+1)

explanation

(n+1)

(n+1+1)

(n+1)(n+2)

(n+2+1)

(n+1)(n+2)

(n+3)

(n+3+1)

(n+1)(n+2)

(n+3)(n+4)

(n+k+1)

This is how I explain the denominator of Dk.

        Daisy Driscoll

                   10BA

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. GCSE Maths Sequences Coursework

    Total Total is equal to Shaded plus Unshaded so; 3N + 1.5N�-1.5N+1 1.5N�+1.5N+1 Nth term for Total = 1.5N�+1.5N+1 I have now found that my general formulae are correct as I used them to predict the shaded, unshaded and total for triangles and have found that my predictions are correct.

  2. Investigation of diagonal difference.

    21 22 31 32 41 42 n n + 1 n + 4G n + 4G + 1 I theorise that every time I increase the width by one, the difference increases by 10. I predict that the 2 x 6 rectangle will have a diagonal difference of 50.

  1. algebra coursework

    99 100 3 X 2 Z Z+Y-1 Z-W+10X Z-W+10X+Y-1 1 2 3 11 12 13 W= 10 (this is the size of the grid - 10 X 10 in this case) Y = 3 (the width of the rectangle - 3 in this case)

  2. Mathematical Coursework: 3-step stairs

    3 4 5 6 7 8 57 58 59 60 61 62 63 64 49 50 51 52 53 54 55 56 41 42 43 44 45 46 47 48 33 34 35 36 37 38 39 40 25 26 27 28 29 30 31 32 17 18 19 20

  1. Staircase Coursework

    But in square 3 you can for example not insert g because it is so big. Therefore I can just use n and g which would give me for 3: 3 = n+2 You now have to use this principle for all squares.

  2. For my investigation I will be finding out patterns and differences in a number ...

    32 31 x 2 = 62 62 - 32 = 30 56 57 66 67 76 77 86 87 56 x 87 = 4872 86 x 57 = 4902 4902 - 4872 = 30 9 10 19 20 29 30 39 40 9 x 40 = 360 39 x 10

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work