• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  • Level: GCSE
  • Subject: Maths
  • Word count: 2763

Maths Coursework

Extracts from this document...

Introduction

Maths Coursework

For this maths coursework, I will be investigating the volume of different sized open boxes. I will look at the different sizes of the squares to see which gives the biggest volume. I am going to be using both square and rectangular sheets of card for this task.

Here is a diagram to demonstrate what I will be doing and illustrate the layout of the sheet of card. The parts labelled ‘x’ will be the squares that I will cut out which its height and sizes will be identical as the other cut out squares.

x                                                ximage00.png

 x                                                           x

 x                                                           x

     x                                                 x

I will now illustrate a diagram of the box after it has been assembled. The sections labelled x is the height of the box.image01.png

To work out the volume of the box, I will use the following formula:

Length x Width x Height

For the first part of my coursework, I will be looking at square pieces of card. I will be investigating square pieces of card and study the relationships between the different sized square cut outs. I am going to look for the square cut out which gives the highest volume overall out of all the rectangles.

...read more.

Middle

360

6

16

2

192

3.5

21

7

514.5

3.6

20.8

6.8

509.184

3.4

21.2

7.2

518.976

3.3

21.4

7.4

522.588

3.2

21.6

7.6

525.312

3.1

21.8

7.8

527.124

 3*

22

8

528

 2.9*

22.2

8.2

527.916

 2.95*

22.1

8.1

528.0795

The square cut out which gave the biggest volume using the formula L x W x H was 2.95 x 2.95.

Secondly, I will look at the rectangle 15cm x 30cm.

Size of cut out square

(Height x)

Length

(30-2x)

Width

(15-2x)

Volume (cm³)

L x W x H

1

28

13

364

2

26

11

572

 3*

24

9

648

 4*

22

7

616

5

20

5

500

6

18

3

324

7

16

1

112

3.5

23

8

644

3.6

22.8

7.8

640.224

3.4

23.2

8.2

646.816

3.3

23.4

8.4

648.648

 3.2*

23.6

8.6

649.472

 3.1*

23.8

8.8

649.264

 3.15*

23.7

8.7

649.4985

The cut out square which gave the largest volume was 3.15 x 3.15 by using the formula L x W H.

Last of all, I am going to look at 16cm x 32cm.

Size of cut out square

(Height x)

Length

(32-2x)

Width

(16-2x)

Volume (cm³)

L x W x H

1

30

14

420

2

28

12

672

3*

26

10

780

4*

24

8

768

5

22

6

660

6

20

4

480

7

18

2

252

3.5

25

9

787.5

3.6

24.8

8.8

785.664

3.4*

25.2

9.2

788.256

3.3*

25.4

9.4

787.908

3.35

25.3

9.3

788.2215

From using the formula L x W x H to calculate, the square cut out which gave the highest volume was 3.4 x 3.4.

Results Table - Maximum volume- ratio 1:2.

Size of rectangle

Size of cut out square (x)

Proportion of rectangle (x÷length)

14 x 28

2.95

0.105357142   0.105

15 x 30

3.15

0.105   0.105

16 x 32

3.4

0.10625   0.105

Looking at my results, I can tell that the best square to cut the corners from is almost 105/1000 of the rectangle’s length.

30cm x 60cm

I predict that the cut out square will be 6.3 x 6.3.

Size of cut out square

(Height x)

Length

(60-2x)

Width

(30-2x)

Volume (cm³)

L x W x H

6.2

47.6

17.6

5194.112

6.3*

47.4

17.4

5195.988

6.4*

47.2

17.2

5195.776

 6.35*

47.3

17.3

 5196.1415


As I can see from my results table, the cut out square is 6.3 x 6.3; therefore, my prediction was correct.

...read more.

Conclusion

Y=4x³-240x²+2000x

image04.png

    X    20          -2x

  100   2000      -200x

  -2x    -40x        4x²

Equation of the curve

image06.png

      = 12x²-480x+2000

a=12

b=-480

c=2000

x=-b± √ b²-4ac

             2a

x= 480± √(480)²-4(12)(2000)  

                      2(12)      

x= 480± √ 134400image07.png

             24

So x will equal:

x = 480+√134400                        or                   = 480- √134400   image07.pngimage07.png

            24                                                                24

x = (480+366.6060556)                                    (480-366.6060556)                                                 image07.png

image07.png

                 24                                                             24

       =32.27525232                                            =4.724747683

The size of the corner which gives the biggest volume is 4.724747683 or 4.7 (to 2 significant figures); it is unlikely to cut a corner of size 32.3cm from a rectangle which is 20cm x 100cm.

Differentiation for the ratio 1:10

The rectangle I will look at is 8cm x 80cm.

Length= 80-2x

Width= 8-2x

Height = x

Therefore the volume is V = (80 – 2x)(8-2x)x

                                     V = (80-2x)(8x-2x²)

                                     V = 640x – 160x² - 16x² - 4x³

                                     V = 4x³ - 176x² + 640x

Equation of the curve:

dx

dv = 12x² - 352x + 640

a = 12

b = -352

c = 640

x = -b±b²-4ac

           2a

x = 352±√(-352)²-4(12)(640)

                    2(12)

x = 27.38585602           or          = 1.947477314

Differentiation for 1:20

The rectangle I will look at is 5:100

Length = 100-2x

Width = 5-2x

Height = x

So the volume is V = (100-2x)(5-2x)x

                         V = (100-2x)(5x-2x²)

                         V = 500x – 200x² - 10x² + 4x³

                         V = 4x³ - 210x² + 500x

Equation of the curve:

dx

dv = 12x³ - 420x + 500

a= 12

b= -420

c= 500

x = -b±√b²-4ac

           2a

x = 420±√-420²-4(12)(500)

              2(12)

x = 33.76601775           or                 1.233982253

Conclusion

I am now going to collect my results. I will look at the proportion of both length and width, which gives the maximum volume.

Length:

W:L

Proportion (x÷l)

1:1

1/16

1:2

1/10

1:3

75/1000

1:4

0.0581

1:5

0.047

1:10

0.0243

1:20

0.0123

Width:

W:L

Proportion (x÷l)

1:1

0.16

1:2

0.211

1:3

0.225

1:4

0.232

1:5

0.236

1:10

0.243

1:20

0.246

...read more.

This student written piece of work is one of many that can be found in our GCSE Open Box Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

3 star(s)

***
This is a well structured investigation. It uses high level mathematics to appropriately determine the relationship between length and volume. To improve this the mathematics should be described in more detail and linked to the desired
investigation outcomes. Strengths and improvements have been suggested throughout.

Marked by teacher Cornelia Bruce 18/07/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Open Box Problem essays

  1. Marked by a teacher

    Open Box Investigation

    5 star(s)

    6.4 6.2 6 5.8 Height 1.5 1.6 1.7 1.8 1.9 2 2.1 Volume 73.5 73.98 74 73.7 73 72 70.6 I have used these results to plot a graph, as shown below. This illustrates the pattern of the results more clearly.

  2. Applications of Differentiation

    Similarly, for the width we have 12 -1 -1 =10cm. The height is the size of the square. The no. of cubes we can fit is the volume of the resulting cuboid i.e.

  1. Investigation: The open box problem.

    �x2.05 V = (12-(2x2.06)) �x2.06 V = (12-(2x2.07)) �x2.07 V = 127.9405 V = 127.914464 V = 127.883772 X = 2.08 X = 2.09 X = 2.11 V = (12-(2x2.08)) �x2.08 V = (12-(2x2.09)) �x2.09 V = (12-(2x2.11)) �x2.11 V = 127.848448 V = 127.808516 V = 127.714924 X = 2.12 X = 2.13 X = 2.14 V = (12-(2x2.12))

  2. Tbe Open Box Problem

    Into decimal points as it is more accurate between 1and 2. Cut off (cm) Width (cm) Length (cm) Height (cm) Volume (cm�) 1.1 12.8 7.8 1.1 109.824 1.2 12.6 7.6 1.2 114.912 1.3 12.4 7.4 1.3 119.288 1.4 12.2 7.2 1.4 122.976 1.5 12 7 1.5 126 1.6 11.8 6.8

  1. THE OPEN BOX PROBLEM

    Below are the results I got through this spreadsheet: Card Size: 10cm by 20cm- TO FIND EXACT CUT OUT SIZE Width Length Cut out size Volume 6.00 16.00 2.00 192.000 5.98 15.98 2.01 192.076 5.96 15.96 2.02 192.146 5.94 15.94 2.03 192.208 5.92 15.92 2.04 192.263 5.90 15.90 2.05 192.311

  2. Open box Problem.

    Now I am going to set the value of X between 1.5 and 2.5. Here are the results: X(cm) X(12cm-2X)(cm) 1.5 121.5 1.6 123.904 1.7 125.732 1.8 127.008 1.9 127.756 2.0 128 2.1 127.764 2.2 127.072 2.3 125.948 2.4 124.916 2.5 122.5 We found out that 2cm is still the biggest value.

  1. Open Box Problem

    I then multiplied the length by the width by the depth to get the volume. I then repeated this with square sizes 5cm x 5cm, 8cm x 8cm and 50cm x 50cm (to compare with a 5cm x 5cm square).

  2. The Open Box Problem

    Length Width Height 2 902 41 11 2 3 1053 39 9 3 4 1036 37 7 4 5 875 35 5 5 3.5 1064 38 8 3.5 3.4 1065.016 38.2 8.2 3.4 3.3 1064.448 38.4 8.4 3.3 3.45 1064.7045 38.1 8.1 3.45 3.44 1064.7983 38.12 8.12

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work