• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Maths Coursework T-Total

Extracts from this document...

Introduction

Matthew Russell Maths Coursework T-Total Using a 9 by 9 grid, a 'T' shape was made covering 5 numbers. The grid is shown below. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 All the numbers in this 'T' shape added together make a total of 37, (1+2+3+11+20=37). This total is known as the "T-total". The number at the bottom of this T-shape (20) is known as the T-number. To investigate if there was any relationship between the T-total and the T-number, the T-shape was translated onto different positions on the grid. ...read more.

Middle

Turquoise = 21 x 5 = 105, 105 - 63 = 42. Green = 25 x 5 = 125, 125 - 63 = 62. Pink = 32 x 5 = 160, 160 - 63 = 97. This proves that the nth term on this grid is definitely, 5n - 63. Would these rules follow through on a different grid, would the position of the T-shape make any difference? Here is a 7 by 7 grid to find out. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 T-number 16 17 18 19 T-total 31 36 41 144 T-number 20 21 22 23 T-total 51 56 61 66 T-number 24 25 26 27 T-total 113 76 81 86 This shows that the rule of going up in 5's applies in all size grids but only in T-shapes that are made in the same manner. ...read more.

Conclusion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 T-number 7 8 9 10 T-total 13 17 21 25 T-number 11 12 13 14 T-total 29 33 37 41 The nth term here is 4n - 15. Because; 7 x 4 = 28, 28 -15 = 13. 14 x 4 = 56, 56 - 15 = 41. Would a different shape make a difference? This time will use an L-shape. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 L-number 6 7 8 9 L-total 9 12 15 18 The nth term here is 3n - 9, as shown below; 6 x 3 = 18, 18 - 9 = 9. 9 x 3 = 27, 27 - 9 = 18. In conclusion, you can see it is not the shape that affects the correlation or the nth term, but the number of numbers in the shape. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Marked by a teacher

    T-total coursework

    5 star(s)

    22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

  2. T-Total Maths

    of 1800 9 by 9 T-number and T-total table T-number T-total 2 73 3 78 4 83 5 88 Here I have added a prediction of mine when I realized the pattern of the sequence, which goes up by 5 each time.

  1. The T-Total Mathematics Coursework Task.

    Right of T-shape T-total All numbers in T-shape added T-number Right of T-shape T-total All numbers in T-shape added 13 58 53 258 14 63 54 263 15 68 55 268 16 73 56 273 17 78 57 278 18 83 58 283 19 88 59 288 20 93 60

  2. T-Shapes Coursework

    + 20 + 21 + 29 + 38 = 127 T-Number = 38 4th T-Shape 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

  1. T-Shapes Coursework

    n x 5 - 63 = t If I was to keep the '5 x ...' it would seem correct as there is only going to be 5 boxes in the t-shape. For the 63 I think I will change it to 7 x 8 being the 8 to represent the 8x8 grid, 7 x 8 = 56.

  2. T-Shapes Coursework

    The Sum of the Tail equals the Middle Number plus the Grid Width. 5) Generalisation It can be assumed that for all possible locations of the 3x1 "T" on the width g grid, these patterns will be true. Therefore, the following logic can be used to create a formula where:

  1. T-Total Maths coursework

    of 1800 9 by 9 T-number and T-total table T-number T-total 2 73 3 78 4 83 5 88 Here I have added a prediction of mine when I realized the pattern of the sequence, which goes up by 5 each time.

  2. The object of this coursework is to find the relationship between the total value ...

    and the N number is 2. I will finally rotate the T-Shape another 90( again, so that the T-Shape will have rotated a total amount of 270(. The value of this T-Shape is 53 (1 + 10 + 11 + 12 + 19 = 53)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work