• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  • Level: GCSE
  • Subject: Maths
  • Word count: 4098

Maths data handling project on basketball

Extracts from this document...

Introduction

Statistics Coursework

Topic – Basketball

Hypothesis

  • The position of a basketball player will affect how many points per game they get
  • The height of a basketball player will effect the position they play
  • In general the height of a basketball player effects how many points they get per game

Guards

Forwards

Centres

PPG

Height (cm)

PPG

Height (cm)

PPG

Height (cm)

6.1

188

5.9

196

5.6

213

1.8

196

3.2

206

5.1

213

7.1

191

7.3

205

4.5

208

3.7

201

5.6

211

11.4

206

15.1

191

7.2

208

7.8

208

19.3

201

1.8

213

1.8

211

17

201

6.2

201

1.3

213

5.4

196

18.2

213

4.2

213

7.9

196

5.7

203

9.5

213

6.5

206

1.9

203

2.2

208

7.8

183

6.5

203

3.7

208

5.7

188

4.6

201

4.1

216

3.8

185

17.9

201

2.3

218

11.4

201

2.9

213

10.1

203

12.8

208

15.9

198

10.7

206

8.4

196

3.5

213

6.3

188

20

206

3.3

191

6

206

Guards

Points Per Game (PPG)

Frequency

0 up to but not including 4

4

4 up to but not including 8

8

8 up to but not including 12

3

12 up to but not including 16

2

16 up to but not including 20

2

20 up to but not including 24

0

Height (cm)

Frequency

180 up to but not including 190

5

190 up to but not including 200

8

200 up to but not including 210

6

210 up to but not including 220

0

Forwards

Points Per Game (PPG)

Frequency

0 up to but not including 4

5

4 up to but not including 8

8

8 up to but not including 12

2

12 up to but not including 16

1

16 up to but not including 20

2

20 up to but not including 24

1

Height (cm)

Frequency

180 up to but not including 190

0

190 up to but not including 200

1

200 up to but not including 210

13

210 up to but not including 220

5

Centres

Points Per Game (PPG)

Frequency

0 up to but not including 4

5

4 up to but not including 8

6

8 up to but not including 12

2

12 up to but not including 16

0

16 up to but not including 20

0

20 up to but not including 24

0

Height (cm)

Frequency

180 up to but not including 190

0

190 up to but not including 200

0

200 up to but not including 210

5

210 up to but not including 220

8

Guards Mean For PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

4

2 x 4 = 8

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

9 x 6 = 54

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

3

3 x 10 = 30

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

2

2 x 14 = 28

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

19

156

Estimate of mean = sum of (middle values x frequencies) ÷ sum of frequencies =

fx ÷ f = 156 ÷ 19 = 8.21 (2 d.p)

Forwards Mean For PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

8 x 6 = 48

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

1

1 x 14 = 14

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

1

1 x 22 = 22

Totals:

19

150

Estimate of mean = sum of (middle values x frequencies) ÷ sum of frequencies =

fx ÷ f = 150 ÷ 19 = 7.89 (2 d.p)

Centres Mean For PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

6

6 x 6 = 36

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

0

0 x 14 = 0

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

0

0 x 18 = 0

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

13

66

Estimate of mean = sum of (middle values x frequencies) ÷ sum of frequencies =

fx ÷ f = 66 ÷ 19 = 3.47 (2 d.p)

Guards Modal Class Interval for PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

4

2 x 4 = 8

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

9 x 6 = 54

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

3

3 x 10 = 30

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

2

2 x 14 = 28

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

19

156

...read more.

Middle

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

8 x 6 = 48

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

1

1 x 14 = 14

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

1

1 x 22 = 22

Totals:

19

150

Modal class intervals equals ‘4 up to but not including 8’ because it has the highest frequency

Centres Modal Class Interval for PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

6

6 x 6 = 36

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

0

0 x 14 = 0

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

0

0 x 18 = 0

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

13

66

Modal class intervals equals ‘4 up to but not including 8’ because it has the highest frequency

Guards Median for PPG

Points Per Game (PPG)

Frequency

0 up to but not including 4

4

4 up to but not including 8

8

8 up to but not including 12

3

12 up to but not including 16

2

16 up to but not including 20

2

20 up to but not including 24

0

Total

19

Median equals n + 1 ÷ 2 = 19 + 1 ÷ 2 = 10th value. Which is in the class interval ‘4 up to but bot including 8.

Forwards Median for PPG

Points Per Game (PPG)

Frequency

0 up to but not including 4

5

4 up to but not including 8

8

8 up to but not including 12

2

12 up to but not including 16

1

16 up to but not including 20

2

...read more.

Conclusion

195.53

190 up to but not including 200

190 up to but not including 200

7.50

Forwards

207.11

200 up to but not including 210

200 up to but not including 210

5.02

Centres

211.15

210 up to but not including 220

210 up to but not including 220

5.03

Centres have the highest mean followed by forwards and guards last. Which is the reverse order of the mean for PPG, which I investigated earlier. This suggests that the height and PPG of each position correlates. The modal class interval and median were equal and the same for each position. Suggesting that the most often height for each position is equal to its middle value. The modal class interval and median increases for each position. It shows that tallest players are centres, the shortest players are guards and the average height players are forwards. Guards had the highest standard deviation. Meaning that the guards data is more spread out across the mean than any other position. There was only a 0.1 difference between forwards and centres standard deviation. This shows that both there data is similarly spread across the mean.
Evidence from my data suggests 42% of guards height were between 190 and 200 cm. 68% of forwards height were between 200 and 210 cm. 62% of centres height were between 210 and 220 cm. These conclusions are based on a sample of only 50 players. I could extend the sample or repeat the whole exercise to confirm my results.

...read more.

This student written piece of work is one of many that can be found in our GCSE Height and Weight of Pupils and other Mayfield High School investigations section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Height and Weight of Pupils and other Mayfield High School investigations essays

  1. Mayfield Maths Coursework

    investigation: Year Group Gender English Maths Science Average KS2 Score IQ 10 Male 2 3 2 2.333333333 78 10 Female 3 2 3 2.666666667 76 7 Female 3 3 3 3 86 7 Female 3 3 3 3 88 11 Female 3 3 3 3 89 7 Female 3 3

  2. Data Handling Project

    Therefore, stratified sampling will be helpful due to the fact that there are different numbers of students in each year, and so there is less chance of unequal representation. I will be investigating 20 boys and 20 girls altogether. I will be calculating my stratified sampling using the table that

  1. GCSE Maths Coursework: Statistics Project

    70<w<80 \ 1 These frequency tables are a more simple way of presenting data. They help me to see the most common class intervals. Here are Bar Charts to show this data: This bar chart illustrates the data in the frequency tables.

  2. What affects a persons ability to estimate?

    results in a more clearer way I've presented the data in bar graph: Observations and conclusions: - The results table and the bar graph show to me that the year group sex with the lowest standard deviation is the Year 11 Males.

  1. GCSE maths statistics coursework

    height (m) frequency 1.45<x<1.5 1 1.5<x<1.55 8 1.55<x<1.6 3 1.6<x<1.65 3 This is a table to show the cumulative frequency of the height of the boys in year 7. height (m) cumulative freq. <1.45 0 <1.5 1 <1.55 9 <1.6 12 <1.65 15 I will now draw a cumulative frequency graph of the data.

  2. Maths: Data Handling Coursework

    However, in this diagram, the tallest girl is 180cm, whereas the tallest boy is 175cm. The tallest girl in ear 7 may be an outlier, however, I decided to keep it because of the girl who came before her in terms of height.

  1. Maths Data Handling

    0, 0, 3, 4, 4, 5, 5, 8, 8 70 0, 0, 2, 2, 3, 4 80 0 90 2 Conclusion Weights (kg) Mean Modal Class Interval Median Range Girls 50.3 40-50 49 36 Boys 55 50-60 52 66 All three measures in the sample were higher for boys than

  2. Maths newspaper data collection project

    I included politics, notices, jobs, adverts, finance, special interest stories, horoscopes and pictures in the 'Other' section because they are all so small by themselves that the results from them would not be any good. Then I counted how many pages there was for each section.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work