• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  • Level: GCSE
  • Subject: Maths
  • Word count: 4098

Maths data handling project on basketball

Extracts from this document...

Introduction

Statistics Coursework

Topic – Basketball

Hypothesis

  • The position of a basketball player will affect how many points per game they get
  • The height of a basketball player will effect the position they play
  • In general the height of a basketball player effects how many points they get per game

Guards

Forwards

Centres

PPG

Height (cm)

PPG

Height (cm)

PPG

Height (cm)

6.1

188

5.9

196

5.6

213

1.8

196

3.2

206

5.1

213

7.1

191

7.3

205

4.5

208

3.7

201

5.6

211

11.4

206

15.1

191

7.2

208

7.8

208

19.3

201

1.8

213

1.8

211

17

201

6.2

201

1.3

213

5.4

196

18.2

213

4.2

213

7.9

196

5.7

203

9.5

213

6.5

206

1.9

203

2.2

208

7.8

183

6.5

203

3.7

208

5.7

188

4.6

201

4.1

216

3.8

185

17.9

201

2.3

218

11.4

201

2.9

213

10.1

203

12.8

208

15.9

198

10.7

206

8.4

196

3.5

213

6.3

188

20

206

3.3

191

6

206

Guards

Points Per Game (PPG)

Frequency

0 up to but not including 4

4

4 up to but not including 8

8

8 up to but not including 12

3

12 up to but not including 16

2

16 up to but not including 20

2

20 up to but not including 24

0

Height (cm)

Frequency

180 up to but not including 190

5

190 up to but not including 200

8

200 up to but not including 210

6

210 up to but not including 220

0

Forwards

Points Per Game (PPG)

Frequency

0 up to but not including 4

5

4 up to but not including 8

8

8 up to but not including 12

2

12 up to but not including 16

1

16 up to but not including 20

2

20 up to but not including 24

1

Height (cm)

Frequency

180 up to but not including 190

0

190 up to but not including 200

1

200 up to but not including 210

13

210 up to but not including 220

5

Centres

Points Per Game (PPG)

Frequency

0 up to but not including 4

5

4 up to but not including 8

6

8 up to but not including 12

2

12 up to but not including 16

0

16 up to but not including 20

0

20 up to but not including 24

0

Height (cm)

Frequency

180 up to but not including 190

0

190 up to but not including 200

0

200 up to but not including 210

5

210 up to but not including 220

8

Guards Mean For PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

4

2 x 4 = 8

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

9 x 6 = 54

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

3

3 x 10 = 30

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

2

2 x 14 = 28

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

19

156

Estimate of mean = sum of (middle values x frequencies) ÷ sum of frequencies =

fx ÷ f = 156 ÷ 19 = 8.21 (2 d.p)

Forwards Mean For PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

8 x 6 = 48

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

1

1 x 14 = 14

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

1

1 x 22 = 22

Totals:

19

150

Estimate of mean = sum of (middle values x frequencies) ÷ sum of frequencies =

fx ÷ f = 150 ÷ 19 = 7.89 (2 d.p)

Centres Mean For PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

6

6 x 6 = 36

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

0

0 x 14 = 0

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

0

0 x 18 = 0

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

13

66

Estimate of mean = sum of (middle values x frequencies) ÷ sum of frequencies =

fx ÷ f = 66 ÷ 19 = 3.47 (2 d.p)

Guards Modal Class Interval for PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

4

2 x 4 = 8

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

9 x 6 = 54

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

3

3 x 10 = 30

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

2

2 x 14 = 28

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

19

156

...read more.

Middle

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

8

8 x 6 = 48

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

1

1 x 14 = 14

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

2

2 x 18 = 36

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

1

1 x 22 = 22

Totals:

19

150

Modal class intervals equals ‘4 up to but not including 8’ because it has the highest frequency

Centres Modal Class Interval for PPG

Points Per Game (PPG)

Middle Value x

Frequency f

fxx

0 up to but not including 4

0 + 4 = 4 ÷ 2 = 2

5

5 x 2 = 10

4 up to but not including 8

4 + 8 = 12 ÷ 2 = 6  

6

6 x 6 = 36

8 up to but not including 12

8 + 12 = 20 ÷ 2 = 10

2

2 x 10 = 20

12 up to but not including 16

12 + 16 = 28 ÷ 2 = 14

0

0 x 14 = 0

16 up to but not including 20

16 + 20 = 36 ÷ 2 = 18

0

0 x 18 = 0

20 up to but not including 24

20 + 24 = 44 ÷ 2 = 22

0

0 x 22 = 0

Totals:

13

66

Modal class intervals equals ‘4 up to but not including 8’ because it has the highest frequency

Guards Median for PPG

Points Per Game (PPG)

Frequency

0 up to but not including 4

4

4 up to but not including 8

8

8 up to but not including 12

3

12 up to but not including 16

2

16 up to but not including 20

2

20 up to but not including 24

0

Total

19

Median equals n + 1 ÷ 2 = 19 + 1 ÷ 2 = 10th value. Which is in the class interval ‘4 up to but bot including 8.

Forwards Median for PPG

Points Per Game (PPG)

Frequency

0 up to but not including 4

5

4 up to but not including 8

8

8 up to but not including 12

2

12 up to but not including 16

1

16 up to but not including 20

2

...read more.

Conclusion

195.53

190 up to but not including 200

190 up to but not including 200

7.50

Forwards

207.11

200 up to but not including 210

200 up to but not including 210

5.02

Centres

211.15

210 up to but not including 220

210 up to but not including 220

5.03

Centres have the highest mean followed by forwards and guards last. Which is the reverse order of the mean for PPG, which I investigated earlier. This suggests that the height and PPG of each position correlates. The modal class interval and median were equal and the same for each position. Suggesting that the most often height for each position is equal to its middle value. The modal class interval and median increases for each position. It shows that tallest players are centres, the shortest players are guards and the average height players are forwards. Guards had the highest standard deviation. Meaning that the guards data is more spread out across the mean than any other position. There was only a 0.1 difference between forwards and centres standard deviation. This shows that both there data is similarly spread across the mean.
Evidence from my data suggests 42% of guards height were between 190 and 200 cm. 68% of forwards height were between 200 and 210 cm. 62% of centres height were between 210 and 220 cm. These conclusions are based on a sample of only 50 players. I could extend the sample or repeat the whole exercise to confirm my results.

...read more.

This student written piece of work is one of many that can be found in our GCSE Height and Weight of Pupils and other Mayfield High School investigations section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Height and Weight of Pupils and other Mayfield High School investigations essays

  1. GCSE maths statistics coursework

    smallest data 1.25 Q1 1.52 Q2 1.57 Q3 1.64 largest data 1.8 Data for year 8 girls - smallest data 1.43 Q1 1.55 Q2 1.58 Q3 1.6 largest data 1.72 Data for year 9 girls - smallest data 1.49 Q1 1.56 Q2 1.61 Q3 1.67 largest data 1.75 I will now draw the box plots and compare them.

  2. What affects a persons ability to estimate?

    As a more in depth method of analysing Gender, I will investigate the results of comparing each different Year group sex. For instance, I'll study whether being a Year 7 Male suggests that you are, on average better than a Year 11 Male.

  1. Maths Data Handling

    modal class interval, the sample demonstrates that in general, the height for boys is greater than the height for girls. This means that my prediction was correct in saying that boys are likely to be taller and heavier than girls.

  2. GCSE Maths Coursework: Statistics Project

    40 1.47 40 1.47 44 1.48 44 1.48 44 1.50 45 1.52 45 1.53 45 1.53 45 1.53 45 1.55 47 1.56 47 1.57 47 1.58 48 1.60 48 1.61 48 1.62 50 1.63 50 1.64 51 1.64 52 1.73 57 The scatter diagram shows that there is strong, positive correlation between the height and weight of year seven girls.

  1. Maths: Data Handling Coursework

    By using the information I had found through drawing a stem and leaf diagram, I am also going to draw box plots. Box plots are helpful to represent data, for example height and weight. Both techniques of representing data would be appropriate to compare height and weight between the different genders.

  2. Data Handling Project

    Therefore, stratified sampling will be helpful due to the fact that there are different numbers of students in each year, and so there is less chance of unequal representation. I will be investigating 20 boys and 20 girls altogether. I will be calculating my stratified sampling using the table that

  1. mayfeild statistics

    6.72 -0.07 0.0049 0.0196 1.67 1 1.67 -0.08 0.0064 0.0064 1.97 1 1.97 0.22 0.0484 0.0484 1.52 2 3.04 -0.23 0.0529 0.1058 1.84 1 1.84 0.09 0.0081 0.0081 1.72 1 1.72 -0.03 0.0009 0.0009 1.76 1 1.76 0.01 0.0001 0.0001 2.06 1 2.06 0.31 0.0961 0.0961 1.7 1 1.7 -0.05

  2. Mayfield High School Project

    Both of these graphs have points positioned very closely to the line of best fit, although that could just be coincidence. Year 10 Male Pupils Female Pupils The year 10 graphs show a complete change with both of the graphs, as the male pupils consists of a practically horizontal line

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work