• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Maths Investigation: Drainage Channels.

Extracts from this document...


Maths Investigation: Drainage Channels. We have been given a length of metal that is 60cm wide. What shape should the metal be bent into so it will hold the greatest volume of water? 60cm X cm X cm Conditions: 1. You must have a symmetrical cross section. 2. The channel must be widest at the top. Semicircle The circumference of the whole circle would be 120cm but the circumference of the semicircle would be 60cm. 120 = 2?R 60 = ?R R = 19.1cm Area = ?R� A = ??x 19.1� A = ? x 3364.76 A = 1145.92 1145.92 is the area of the whole circle so the area of the semicircle is half of that. ...read more.


224.88cm� Example 2 Sin10� x X/30 X = 0.174 x 30 X = 5.21 Cos10� x h/30 H = 0.98 x 30 H = 29.54 Area = 5.21 x 29.54 = 154.0597cm� As you can see this is a long drawn out process, so if we were to create a table it would save having to draw all the triangles out. This is on the next page Rectangles X X 60 - 2X Example 1 5cm 5cm 50cm Area = 50 x 5 Area = 250cm� Graph of results on next page. Trapeziums. 20cm 20cm 20cm 20cm 20cm Opp xcm Adj Hyp H 50� 20cm Sin50� = x/20 X = 20sin50 Cos50� = h/20 H = 20cos50� Instead of doing this drawn out process I found a formula that worked, it is Area = (a+b/2) ...read more.


X 20 X S Z H H Z S B X H Z S SinZ = x/s X = s x sinz� Cosz = h/s H = S x cosz Area = b + (b + 2s sinz�)/2 = Ans Area = Ans x 20cosz� There are graphs on the next few pages to represent these results. (To enter these results into a spreadsheet I needed to know about radians which is how a spreadsheet works.) 2 x 3.142 = 360� 1� = 3.142/180� N Sides 180/n 60/n 36� Side = 60/n Angle = 180/n 180/n 90/n A H O 30/n TOA CAH SOH (Tan 90/n = 30/n) /h h = (30/n) / tan 90/n Area = 30/n x (30/n) /tan 90/n = 30/n x 30/n tan 90/n Formula for Area is = 900/ (n x tan 90/n) ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Borders Investigation

    After much laborious construction and subsequent disassembly using "multi-link" cubes, the following table was produced: n 0 1 2 3 4 Volume 1 7 25 63 129 On this table, the differences do not become constant until the third row.

  2. Geography Investigation: Residential Areas

    I have purposely not collected data from this area. My last hypothesis explains in more detail why I have done this. On the next few pages are blank copies of my different surveys, The 'Internal' and 'External' respectively. I have annotated them outlining why I have asked this question and to what hypothesis it relates to - I have

  1. Fencing - maths coursework

    m - 48112.52243m = 14387.477757m2 The square is greater because it has more sides. These shapes are both regular polygons and the two shapes have given us the largest area from their family groups. A I have discovered that the more sides you have the more the area will be

  2. Biological Individual Investigation What Effects Have Management Had On Grasses In Rushey Plain, Epping ...

    Go through the process again for the other coordinates listed, and then repeat all of this for the wooded area. Justification Of Method * The 10m X 10m area is big enough to get a good variety of samples from each site.

  1. Geography As Environmental Investigation

    Null hypothesis: The null hypothesis is that there is no relationship between traffic levels and noise levels. Alternative hypothesis: The alternative hypothesis is that there is a relationship between traffic levels and noise levels. Formula for Spearman's rank Correlation: 6?d� = 6 x 1427 = 8562 (n�-n)

  2. Maths Investigation on Trays.

    (18-2x)2 = 4(18-2x)x (18-2x)(18-2x) = 4x(18-2x) (18-2x) (18-2x) 18-2x = 4x 18= 4x + 2x 18= 6x so x must equal 3. As you can see by the results the formulae was correct in finding when the max volume will occur. I will see if this formula works for the other trays.

  1. Fencing investigation.

    the height of the isosceles triangle has been solved and we already know the length of the base, we can easily work out the area of the triangle. Area = 1/2 x base x height Area = 1/2 x 400 x 223.607 Area = 200 x 223.607 Area = 44721.35955m2

  2. Fencing Problem - Math's Coursework.

    484.768 7271.520 40 480 479.583 9591.660 50 475 474.342 11858.550 60 470 469.042 14071.260 70 465 463.681 16228.835 80 460 458.258 18330.320 90 455 452.769 20374.605 100 450 447.214 22360.700 110 445 441.588 24287.340 120 440 435.890 26153.400 130 This coursework from www.studentcentral.co.uk (http://www.studentcentral.co.uk/coursework/essays/2307.html)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work