• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Maths Sequences Investigation

Extracts from this document...

Introduction

Maths Coursework

        Firstly I drew out a series of patterns so I could study the many different aspects of them. Here is what I found:

Black Squares

White Squares

Diameter

Total Squares

1

4

3

5

5

8

5

13

13

12

7

25

25

16

9

41

41

20

11

61

61

24

13

85

85

28

15

113

113

32

17

145

  • The number of Black Squares increases each time by the number of white squares.
  • The number of White squares increases in multiples of four every time
  • The total squares equals the sum of Black Squares and White Squares
  • The diameter increases by two every time

Because this sequence of patterns follows a sequence and increases by some

...read more.

Middle

13

85

7

85

28

15

113

8

113

32

17

145

Now I can use n as a basis for building equations used to define the different aspects such as the ones in the table above. Here is the equation for the number of white squares:

4 x N = the number of white squares

4N = W

And I also worked out the equation for the Diameter of any pattern:

2 x N + 1 = the diameter of the pattern

2N+1 = D

        These two equations were relatively easy to work out because they follow a set increment. I simply looked down the table above and noted down the difference in them:

White Squares

Difference

Diameter

Difference

4

3

4

2

8

5

4

2

12

7

4

2

16

9

4

2

20

11

4

2

24

13

4

2

28

15

4

2

32

17


Forming an equation for the total number of squares is slightly harder. Now I will explain how I worked it out:

...read more.

Conclusion

N2 + 8N + 1                N=6

image05.png

(6 x 6) + (8 x 6) + 1   =   36 + 48 + 1   =   85  


Another Prediction:

N2 + 10N + 1                N=8

(8 x 8) + (10 x 8) + 1   =   64 + 80 + 1   =   145   Correct

Now I will add this to my equation:

N2 + 6N + 1

(Incorrect Version)

I need to change to coefficient to reflect ‘N + 2’

N2 + N(N+2) + 1

This is now correct but can be simplified:

N2 + N2 + 2N +1

And further:

2N2 + 2N + 1


This is now my final formula. I am going to test it on the same patterns I did before just in case I have made an error.

N=6                2N2 + 2N + 1        = 2(6 x 6) + (2 x 6) + 1

= (2 x 36) + 12 + 1

= 72 + 12 + 1

= 85                 Correct

N=8                2N2 + 2N + 1        = 2(8 x 8) + (2 x 8) + 1

                                        = (2 x 64) + 16 + 1

                                        = 128 + 16 +1

                                        = 145                 Correct

Now I know this formula works, I am able to predict the number of squares in much bigger patterns:

N=20                2N2 + 2N + 1        = 2(20 X 20) + (2 X 20) + 1

                                        = (2 X 400) + 40 + 1

                                        = 800 + 40 + 1

                                        = 841 total squares

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-Total Maths

    T = 5N-63 N = 20 21 22 23 T = 37 42 47 52 T-number T = (5x20)-63 = 100-63 T = 37 T-total This equation has produced its first correct answer. I will carry on and test T-shape I know the T-total for N = 20 T =

  2. Connect 4 - Maths Investigation.

    Using the difference method to form an overall rule I multiply the difference (11) by the length and take away n to get the total for any connect. Premature rule: 11L - n For the 5 x 5: 11 x 5 - 27 Rule for Connect 4 with height 5:

  1. T-Total Investigation

    51 52 53 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

  2. T-Shapes Coursework

    n + (n + n) + (n + n) + ... + (n + n) n + 2n + 2n + ... + 2n (There are "p" number of "2n"s) n + (2n x p) n{2p + 1} n x {2(w - 1) + 1} (Substituting p as described above)

  1. T-total Investigation

    I then multiplied 7 by the T-no. I then took away the T-total from my answer. I found out that the difference is 110. The answer is 110 because that is the total of the differences between the T-no and the numbers in each of other 4 squares.

  2. T-Total Maths coursework

    +7 = 65+7 = 72 Rotation of 2700 9 by 9 T-number and T-total table T-number T-total 12 53 13 58 14 63 15 68 Here I have added a prediction of mine when I realized the pattern of the sequence, which goes up by 5 each time.

  1. T-Totals Maths

    n - 19 n - 18 n - 17 n - 9 n In this case on my 9x9 grid, the square directly above the T-Number (which is 20)

  2. Urban Settlements have much greater accessibility than rural settlements. Is this so?

    At one stage, a bypass was proposed, a map of which is attached. This would have taken the strain off the roundabout in the centre of the village, easing Bexley's traffic problems. South Darenth has a very different traffic layout.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work