• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

mayfield high school

Extracts from this document...

Introduction

Statistics coursework

The term "secondary data" means that the data was previously collected for others to study whereas primary or original data is data that has been gathered by the individual.  

Some people tend to believe that using secondary data can be less expensive than gathering the data all over again. However, secondary data may not be suited for your particular purpose.

Here are some advantages and disadvantages of using primary and secondary data:

disadvantages

Advantages

1. The volume of primary data could be large.

2. Primary data is usually expensive.

3. If the data is not collected properly, then the individual might create false results.

1. Essential data

2. Unbiased figures

3.Rrecords straight from the population

Primary data

1. The research matter may not be the focus of the secondary data.

2. There could a bias in  secondary data

1. Secondary data is usually accurate and well organised. 2. Saves time and money.

Secondary data

Based on the secondary data collection that I was provided with, Mayfield high school is a mixed school with pupils in years 7, 8, 9, 10 and 11.

...read more.

Middle

106+84=190

Total

Example

The stratified sample of year 11 boys would be 84/190 * 52: The number of boys in year 11 divided by the total number of boys in the whole of KS4 multiplied by the size of the sample that I want which is 52.

Now, I'm going to choose the students that I'm going to include in my sample.

Boys

Firstly, I have to find a random sample of 29 boys in year 10. To ensure my data is fair (unbiased) and representative of all boys in year 10 I'll give each boy in year 10 a number starting at 001 and finishing at 106 in year 10.

For year 10 I'm going to use a scientific calculator which is programmed to give me 3 digit numbers up to 106. I will use all the numbers to the left of the decimal place to select students (I will discard all the numbers after the decimal points and use only the ones before it).  Then I stop when 29 have been chosen. For the boys in year 11, the calculator will be programmed so that the numbers are from 001-084, I will then choose the first 23 students that come up, and this ensures the selection is random.  

I repeated this process for the girls in year 10 and 11, but each time I changed the number my scientific calculator could go up to, e.g. for girls in year 11 my maximum number would become 86, because there is only 86 girls in year 11.  

Once I had my Stratified random sample of 52 boys and 52 girls in KS4. I needed to find the heaviest boys and girls in my samples. So, I decided to plot my weights into a cumulative frequency in order to determine the median! Here are my cumulative frequency tables:

Boys

Cumulative frequency

Frequency

Heights (m)

0

3

9

26

41

51

52

0

3

6

17

15

10

1

  0 < x ≤30

30 < x  40

40 < x  50

50 < x  60

60 < x  70

70 < x  80

80 < x  90

...read more.

Conclusion

 < x  60. So, we wouldn't know their exact weight. In order for a more precise and accurate estimation of the median I will do a stem and leaf diagram and box plots for both of the 52 random samples. A stem and leaf diagram would be more accurate because unlike the cumulative frequency graph we don't group

5     7

3

0     2     5     5     7     9

4

0     0     0     0     0     4     4     6     6     6     7     7     7     9

5

0     0     0     0     0    0     0     2     3     3     3     3     3     4     4    4     6     6     8

6

1     2     3     5     6     8

7

0     0     0     0     2

8

everything so no information is lost. Here are the 2 stem and leaf diagram (in order)

Boys in KS4

Lowest value= 35

Lower quartile= 50

Median= 60

Upper quartile= 66

Girls in KS4

8

3

0     2     2     2     2     4     4     5     5     5     5     7     8     8     8     8     8

4

0     0     0     0     0     0     0     1     1     2     2     2     3     4     4     4     5     5     5     6 6     6     7     8     9     9     9  

5

0     0     0     0     5     6     6

6

Lowest value= 38

Lower quartile= 47

Median= 51

Upper quartile= 56

Conclusion

My findings have proven that my hypothesis was actually correct which was “boys are heavier than girls". I compared both median for  girls and for boys, I found out that the median for girls is actually 10 kg less than the boy’s median which was 60 kg and for the girls: 60-10= 50 kg.

My box plots have also shown that, the weights of the boys are more spread than girls. So, this also proves that boys are heavier than girls  

 

...read more.

This student written piece of work is one of many that can be found in our GCSE Height and Weight of Pupils and other Mayfield High School investigations section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Height and Weight of Pupils and other Mayfield High School investigations essays

  1. mayfield high statistics coursework

    will compare my results from the cumulative frequency against both boys and girls height and weight and make a suitable conclusion from this representation. Comparison of Height and Weight of Boys and Girls from C.Frequency and Box Plots From the Cumulative Frequency Diagram I have come to find that the

  2. Mayfield High Statistics Coursework

    results could be used to make predictions for all of Mayfield high school as well as schools in general. In my first hypothesis I did have some limitation as I believe that I should have sampled more people to get better more reliable results.

  1. Statistics Mayfield High

    The second scatter graph shows the results for Female IQs against their KS2 Maths results. There is a much smaller range on this scatter diagram than on the one showing the Male results: the girls have a smaller range for their IQs but a similar size one for their KS2 Maths results.

  2. mayfeild statistics

    rs = 0.8236 This is a very good correlation figure showing a very close relationship between height and weight. This helps prove my hypothesis that as the height increases so will the weight. I will now apply spearman's rank to the girls data.

  1. Mayfield High School Project

    Although when looking at my cumulative frequency graphs of height and weight, I could make the statement that both diagrams appear to be very similar from appearance although I cannot make any form of relationship between the height and weight.

  2. Conduct an investigation comparing height and weight from pupils in Mayfield School.

    x = 170 - 134 = 36 = 36 (36 + 30 = 66) 1 1 The first value on graph is 30, so 30 + 36 = 66kg So the equation of my line of best fit for boys suggests that a boy who is 170cm tall will weigh 66kg.

  1. Handling Data - Mayfield High School

    The table below shows the numbers of students of each year and gender. Year Number of boys Number of girls Total number of students in year 7 151 131 282 8 145 125 270 9 118 142 260 10 106 94 200 11 84 86 170 Total number of students

  2. Maths Statistics Coursework: Mayfield High

    Boys 118 1183 x 50 = 5 Year 10 Boys 106 1183 x 50 = 4 Year 11 Boys 84 1183 x 50 = 4 Once I'd known how many pupils I will need to sample from each year, I then performed a random sample.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work