• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  • Level: GCSE
  • Subject: Maths
  • Word count: 1606

Mechanics 2 Coursework - Assumptions related to both the model and the experiment.

Extracts from this document...

Introduction

Mechanics 2 Coursework

image00.png


Mechanics 2 Coursework

Assumptions related to both the model and the experimentimage01.png

Assumptions that are made for both the model and the experiment:

  • The gravity, g, is taken to be 9.8ms-1
  • The ball is taken to be a particle
  • The accuracy of the timing is subjective – the start and end times are based upon the testers’ judgement.
  • Readings are taken from the bottom of the ball and not the centre.
  • The downward direction is taken to be positive, therefore any rebounds are negative.
  • Air resistance is not taken into account.
  • Values are taken to 2 d.p.

image12.png

Manipulating the modelimage19.png

Firstly, a theoretical equation needs to be obtained linking e (the elasticity of the ball), h1 (the downward height) and h2 (the rebound height).  This can be obtained using the equations of linear motion.

When dropping the ball:

s = h1                a = g                u = 0                v = ?

        Using         v2 = u2 + 2as

                v2 = 0 + (2gh1)

image14.png

                v =  2h1g

When rebounding the ball:

s = -h2                a = -g                u = ?                v = 0

        Using         v2 = u2 + 2as

                u2 = v2 – 2as

                u2 = -2 x –h2 x –g

image14.png

u = -  2h2g        

Using v = -eu, we can find an equation in terms of e.

image14.pngimage35.png

                2h1g = -e(-  2h2g)

image14.pngimage35.png

                2h1g = e  2h2g

image03.pngimage02.png

                     e = image04.png

image05.png

     e =

From the above model, it can be seen that the gradient will give us a value of e2.

...read more.

Middle

                2hog = 0 + gt

image15.pngimage16.png

t =image04.png

From this, the final equation for the sum time can be established:

image17.png

image18.png

 =

Where h is the initial drop height, g is the gravitational pull (at 9.8ms-1 and e is the elasticity (which is found using the first equation obtained in terms of h1 and h2)

image12.pngimage12.png

Conducting the Experimentimage20.png

Method:image21.png

image22.png

Other methods used to reduce the experimenter errors were to have two people checking the rebound height – this lowers the chance of experimenter judgement affecting the results adversely.  The whole method process was used for both the rebound heights and time taken to stop bouncing.  The results are shown on the following page.


Results:

Experiment One – rebound height (in cms)

Drop Height / Drop no.

1

2

3

4

5

Mean

100cm

50

52.5

53

50

51

51.3

80cm

27

29

28

27

28

27.8

60cm

21

22

19

20

21

20.6

40cm

12

11

11.5

12

12.5

11.8

20cm

9

5

6

7

7

6.8

Experiment Two – Time Taken to stop bouncing (in seconds)

Drop Height / Drop no.

1

2

3

4

5

Mean

100cm

4

3.8

3.9

3.9

3.9

3.9

80cm

3.3

3.2

3.1

3.1

3.2

3.18

60cm

2.9

2.8

3

2.8

2.5

2.8

40cm

2.5

2.6

2.5

2.6

2.4

2.52

20cm

1.9

1.9

2

1.8

2

1.92

image12.png

Applying the model to the resultsimage23.png

For values of e:

Using the first equation,

image05.png

e =

Using the graph, values for the maximum, minimum and mean gradients can be obtained, thus giving maximum, minimum and mean values of e.

image24.png

Mean value of e =

e = 0.75 to 2 d.p

image25.png

Maximum value of e =

e = 0.77 to 2 d.p

image26.png

Minimum

...read more.

Conclusion

Initial results indicated that taking the means, and rounding them to 2.d.p may have caused the difference between the model and the actual results.  However, workings have taken place using the maximum and minimum times and values of e, which also show a similar difference between the model and the actual results.

image33.png

Revision of the process

image34.png

In order to improve the model:

  • Fewer assumptions would be used
  • Air resistance would be taken into account
  • Also the fact that the ball is not a fixed particle needs to be taken into account – this is a major contributing factor to the difference between the model and the results.

In order to improve the experiment:

  • Take more measurements for the times and rebound heights.
  • Use a technological method to measure the times and rebound heights to increase the validity of the results.
  • Increase the accuracy of the value of gravity.

The effects that these amendments would have are that the accuracy of the results would be increased.  This, in turn, would mean the value of e would be more exact, thus giving a model that gives times closer to the experimental times.

image12.png

Page

...read more.

This student written piece of work is one of many that can be found in our GCSE Height and Weight of Pupils and other Mayfield High School investigations section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Height and Weight of Pupils and other Mayfield High School investigations essays

  1. Investigate the factors affecting the motion of a trolley.

    0.781 0.734 0.759 92.27 20 0.726 0.710 0.713 0.716 97.72 Analysis: The evidence in the observations shows a trend where increasing the height of the ramp, decreases the time taken for the trolley to reach the bottom. It also shows that with an increase of height, there is an increase of average speed at which the trolley travels.

  2. Investigate the effect of temperature on the bounce height of a squash ball.

    expand and the molecules to move faster which will caused them to hit the sides more often and harder. This made the rubber expand and store more elastic energy. This meant that the bounce height was bigger because the more stretched the rubber became, the better it converted elastic potential

  1. Statistics Coursework

    With this data I will then create box and whisker plots, so that these pieces of information are easier to compare. I will also transfer this information into a bar graph, so that it will hopefully become clearer and easier to read as a chart.

  2. Mayfield Coursework

    the lower quartile, the upper quartile, median value and the inter quartile. To work out the quartiles I had to first click on a box, press equals, the click Fx at the top of the screen. I then choose quartile from the selection.

  1. How does the height from which a table tennis ball is dropped affect its ...

    However, it is also a possibility that the table tennis ball 'warmed up' and increased in bounce the more it was used, like a squash ball,

  2. Liquid chromatography is a technique used to separate components of a mixture to isolate ...

    There is then a large significant decrease between the 1 in 5 and the standard solution. It could be suggested that this is the region of concentration in which the column becomes overloaded. The symmetry values for the peaks at 10% height remain fairly constant for theophylline from the most

  1. Mayfield Coursework

    1037 1176 11 1062 1097 11 1041 11 1067 After I eventually gained all these random numbers I was able to enter it into the Mayfield high database and find all the relevant information for each people with the corresponding number, such as weight and height.

  2. maths coursework t-shapes

    48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 T-Number (n) T-Total First Difference Second Difference Formula 20 (1+2+3+11+20)= 37 5 37-(5*20)= -63 5n-63 21

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work