• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10
11. 11
11
12. 12
12
13. 13
13
14. 14
14
• Level: GCSE
• Subject: Maths
• Word count: 2260

# Medicine and mathematics

Extracts from this document...

Introduction

Medicine and Mathematic

Investigation By - Akash Singh

## Introduction

As you may have realized from the title, this investigation in sincerely based on the use of medicine and mathematics, we will be investigating how penicillin reacts in the body, and how its concentration decreases in the bloodstream. Penicillin was named the miracle drug, as its properties and against fighting bacterial infections were very effective. Penicillin was discovered in 1929 through Sir Alexander Fleming.

Medicine and Mathematics

Part A

Well if you look at the table give above you will see that the amount of insulin administrated is 10,00 micro units. So “half of the original dosage (10,00 Micro Units) , will be (5,00 Micro Units).

Looking at the table, it takes 15 minutes after the dosage of insulin is at half of the original dosage so at 5,00 Micro units.

Question 2.

In the equation y=10(0.95)x, 10 represent the units of insulin that started off in the bloodstream, and when the units of insulin reduce each minute, that value is multiplied with 0.95 to get the units of insulin after every minute. So basically (0.95) represent the fraction of the original dose.  The x is the amount of time /m at which the certain amount of insulin is active in the blood stream.

Question 3

Middle

40

0.08878

41

0.05327

42

0.03196

43

0.01918

44

0.01151

45

0.00690

46

0.00414

47

0.00249

48

0.00149

 time dose 1 dose 2 dose 3 does 4 dose 5 0 300.0000 6 13.9968 313.9968 12 14.6498 314.6498 18 314.6498 14.6803 314.6803 24 314.6803 14.6817 314.6817 30 314.6817 14.68179 36 0.68499 42 0.03196 48 0.00149

Table 2: Amount of Pencillin in bloodstream after 48 hours with administration dosage of 150mg

 Hour Amount of Insluin in the bloodstream 0 150.00000 1 90.00000 2 54.00000 3 32.40000 4 19.44000 5 11.66400 6 156.99840 7 94.19904 8 56.51942 9 33.91165 10 20.34699 11 12.20820 12 157.32492 13 94.39495 14 56.63697 15 33.98218 16 20.38931 17 12.23359 18 157.34015 19 94.40409 20 56.64245 21 33.98547 22 20.39128 23 12.23477 24 157.34086 25 94.40452 26 56.64271 27 33.98563 28 20.39138 29 12.23483 30 7.34090 31 4.40454 32 2.64272 33 1.58563 34 0.95138 35 0.57083 36 0.34250 37 0.20550 38 0.12330 39 0.07398 40 0.04439 41 0.02663 42 0.01598 43 0.00959 44 0.00575 45 0.00345 46 0.00207 47 0.00124 48 0.00075

Q9. <Table for amount of penicillin remaining after 48 hours, with 8

Conclusion

ss="c0">64.8

65.88839117

12

0.653034701

38.88

39.5330347

13

0.39182082

23.328

23.71982082

14

0.235092492

13.9968

14.23189249

15

0.141055495

8.39808

8.539135495

16

0.084633297

5.038848

300

305.1234813

17

0.050779978

3.023309

180

183.0740888

18

0.030467987

1.813985

108

109.8444533

19

0.018280792

1.088391

64.8

65.90667196

20

0.010968475

0.653035

38.88

39.54400318

21

0.006581085

0.391821

23.328

23.72640191

22

0.003948651

0.235092

13.9968

14.23584114

23

0.002369191

0.141055

8.39808

8.541504686

24

0.001421514

0.084633

5.038848

300

305.1249028

25

0.000852909

0.05078

3.023309

180

183.0749417

26

0.000511745

0.030468

1.813985

108

109.844965

27

0.000307047

0.018281

1.088391

64.8

65.90697901

28

0.000184228

0.010968

0.653035

38.88

39.5441874

29

0.000110537

0.006581

0.391821

23.328

23.72651244

30

6.63222E-05

0.003949

0.235092

13.9968

300

314.2359075

31

3.97933E-05

0.002369

0.141055

8.39808

180

188.5415445

32

2.3876E-05

0.001422

0.084633

5.038848

108

113.1249267

33

1.43256E-05

0.000853

0.05078

3.023309

64.8

67.87495601

34

8.59535E-06

0.000512

0.030468

1.813985

38.88

40.72497361

35

5.15721E-06

0.000307

0.018281

1.088391

23.328

24.43498416

36

3.09433E-06

0.000184

0.010968

0.653035

13.9968

14.6609905

37

1.8566E-06

0.000111

0.006581

0.391821

8.39808

8.796594299

38

1.11396E-06

6.63E-05

0.003949

0.235092

5.038848

5.27795658

39

6.68375E-07

3.98E-05

0.002369

0.141055

3.023309

3.166773948

40

4.01025E-07

2.39E-05

0.001422

0.084633

1.813985

1.900064369

41

2.40615E-07

1.43E-05

0.000853

0.05078

1.088391

1.140038621

42

1.44369E-07

8.6E-06

0.000512

0.030468

0.653035

0.684023173

43

8.66214E-08

5.16E-06

0.000307

0.018281

0.391821

0.410413904

44

5.19728E-08

3.09E-06

0.000184

0.010968

0.235092

0.246248342

45

3.11837E-08

1.86E-06

0.000111

0.006581

0.141055

0.147749005

46

1.87102E-08

1.11E-06

6.63E-05

0.003949

0.084633

0.088649403

47

1.12261E-08

6.68E-07

3.98E-05

0.002369

0.05078

0.053189642

48

6.73568E-09

4.01E-07

2.39E-05

0.001422

0.030468

0.031913785

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Fencing Problem essays

1. ## Geography Investigation: Residential Areas

With these values I can plot a box plot and then I will be able to appraise the spread of the data. On the next page is a table which is the beginning of the stages of creating a cumulative frequency graph and then a box plot.

2. ## Quality of life in Leicester.

17% of the resident had no central heating. There was a lot of theft and crime in these areas. Many people complained about the noise and smells as everything went through the walls. There were also the problems of no private gardens and some of these flats provided no parking for the residents.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work