• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  • Level: GCSE
  • Subject: Maths
  • Word count: 3997

My investigation will be on 3 - step stairs where I will be: Trying to investigate the relationship between the stair total and the position

Extracts from this document...

Introduction

Investigation on Step Stairs

Introduction

My investigation will be on 3 – step stairs where I will be:

  • Trying to investigate the relationship between the stair total and the position of the stair shape on the grid

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

73

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

  • Further investigating the relationship between the stair totals and other step stair on other number grids e.g. 5 x 5 grid and 4 – step stairs

21

22

23

24

25

16

17

18

19

20

11

12

13

14

15

6

7

8

9

10

1

2

3

4

5

31

21

22

11

12

13

1

2

3

4

Prediction

As my investigation unfolds I believe I will find a pattern connecting the all

Plan

During my investigation on stairs I will:

  1. do the horizontal 3 – step stairs and find out whether there is a formula to locate another 3 – step stair horizontally on the 10 x 10 grid
  2. test the formula to see if it works
  3. repeat the same process for vertical and diagonal 3 – step stairs on the 10 x 10 grid and find a formula for both
  4. test both formulae and see if they achieve their purpose
  5. compare the formula found for horizontal, vertical, and diagonal 3 – step stairs on the 10 x 10 grid and see if there is a pattern
  6. repeat for 4 and 5 step stairs
  7. compare the formulae for 3, 4 and 5 step stair to uncover an overall formula linking them together with the ability to find the total for any stair no matter step stair or stair number
  8. change the grid size for the 3 – step stairs and see if the outcomes are the same or different
  9. find a formula using the grid size and the stair number for the 3 – step stair
...read more.

Middle

71

72

73

73

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

31

21

22

11

12

13

1

2

3

4

32

22

23

12

13

14

2

3

4

5

33

23

24

13

14

15

3

4

5

6

34

24

25

14

15

16

4

5

6

7

35

25

26

15

16

17

5

6

7

8

Stair Number

Addition

Total

Pattern

1

1 + 2 + 3 + 4 + 11 + 12 + 13 + 21 + 22 + 31

120

10*1 + 110

2

2 + 3 + 4 + 5 + 12 + 13 + 14 + 22 + 23 + 32

130

10*2 + 110

3

3 + 4 + 5 + 6 + 13 + 14 + 15 + 23 + 24 + 33

140

10*3 + 110

4

4 + 5 + 6 + 7 + 14 + 15 + 16 + 24 + 25 + 34

150

10*4 + 110

5

5 + 6 + 7 + 8 + 15 + 16 + 17 + 25 + 26 + 35

160

10*5 + 110

Un = 10n + 110

n = stair number

If I’m correct I believe this formula will be able to find any other 4 – step stair horizontally, vertically and diagonally on the 10 x 10 grid.

Therefore to find the total for stair number 10 I will simply use the formula, which will be U10 = 10*10 + 110 and the answer is 210.  

5 – Step stairs horizontally

91

92

93

94

95

96

97

98

99

100

81

82

83

84

85

86

87

88

89

90

71

72

73

73

75

76

77

78

79

80

61

62

63

64

65

66

67

68

69

70

51

52

53

54

55

56

57

58

59

60

41

42

43

44

45

46

47

48

49

50

31

32

33

34

35

36

37

38

39

40

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

41

31

32

21

22

23

11

12

13

14

1

2

3

4

5

42

32

33

22

23

24

12

13

14

15

2

3

4

5

6

43

33

34

23

24

25

13

14

15

16

3

4

5

6

7

44

34

35

24

25

26

14

15

16

17

4

5

6

7

8

45

35

36

25

26

27

15

16

17

18

5

6

7

8

9

Stair Number

Addition

Total

Pattern

1

1 + 2 + 3 + 4 + 5 + 11 + 12 + 13 + 14 + 21 + 22 + 23 + 31 + 32 + 41

235

15*1 + 220

2

2 + 3 + 4 + 5 + 6 + 12 + 13 + 14 + 15 + 22 + 23 + 24 + 32 + 33 + 42

250

15*2 + 220

3

3 + 4 + 5 + 6 + 7 + 13 + 14 + 15 + 17 + 23 + 24 + 25 + 33 + 34 + 43

265

15*3 + 220

4

4 + 5 + 6 + 7 + 8 + 14 + 15 + 16 + 17 + 24 + 25 + 26 + 34 + 35 + 44

280

15*4 + 220

5

5 + 6 + 7 + 8 + 9 + 15 + 16 + 17 + 18 + 25 + 26 + 27 + 35 + 36 + 45

295

15*5 + 220

Un = 15n + 220

n = stair number

If I’m correct I believe this formula will be able to find any other 5 – step stair horizontally, vertically and diagonally on the 10 x 10 grid.

Therefore to find the total for stair number 10 I will simply use the formula, which will be U10 = 15*10 + 220 and the answer is 370.  

Step Stair

Formulae

Pattern

3

6n + 44

[3(3+1)/2]n +[(3-1)*3*(3+1)/6]*11

4

10n + 110

[4(4+1)/2]n + [(4-1)*4*(4+1)/6]*11

5

15n + 220

[5(5+1)/2]n + [(4-1)*4*(4+1)/6]*11

Un = [s(s+1)/2]n + [(s-1)*s*s(+1)/6]*11

If I’m correct I believe this formula will be able to find any other step stair horizontally, vertically and diagonally on the 10 x 10 grid.

Therefore to find the total for stair number 10 for a 10 – step stair I will use the formula, which will be U10 = [10(10+1)/2]n + [(10-1)*10*(10+1)/6]*11 and the answer is 715.

Grid size for 3 – step stairs

Using g as the grid size I will see whether there is a formula that links the 3 – step stairs together with the size of the grid.

 9 x 9 grid

73

74

75

76

77

78

79

80

81

64

65

66

67

68

69

70

71

72

55

56

57

58

59

60

61

62

63

46

47

48

49

50

51

52

53

54

37

38

39

40

41

42

43

44

45

28

29

30

31

32

33

34

35

36

19

20

21

22

23

24

25

26

27

10

11

12

13

14

15

16

16

18

1

2

3

4

5

6

7

8

9

19

10

11

1

2

3

20

11

12

2

3

4

21

12

13

3

4

5

Stair Number

Addition

Total

Pattern

1

1 + 2 + 3 + 10 + 11 + 19

46

6*1 + 40

2

2 + 3 + 4 + 11 + 12 + 20

52

6*2 + 40

3

3 + 4 + 5 + 12 + 13 + 21

58

6*3 + 40

The formula for the 9 x 9 grid for 3 – step stairs is Un = 6n + 40

n = stair number

Therefore to find the total for stair number 9 I will simply use the formula, which will be U9 = 6*9 + 40 and the answer is 94.  

8 x 8 grid

57

58

59

60

61

62

63

64

49

50

51

52

53

54

55

56

41

42

43

44

45

46

47

48

33

34

35

36

37

38

39

40

25

26

27

28

29

30

31

32

17

18

19

20

21

22

23

24

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

17

9

10

1

2

3

18

10

11

2

3

4

19

11

12

3

4

5

Stair Number

Addition

Total

Pattern

1

1 + 2 + 3 + 9 + 10 + 17

42

6*1 + 36

2

2 + 3 + 4 + 10 + 11 + 18

48

6*2 + 36

3

3 + 4 + 5 + 11 + 12 + 19

54

6*3 + 36

The formula for the 8 x 8 grid for 3 – step stairs is Un = 6n + 36

n = stair number

Therefore to find the total for stair number 8 I will simply use the formula which will be U8 = 6*8 + 36 and the answer is 84.  

I will now compare the 8 x 8 grid to the 9 x 9 and 10 x 10 to see whether there is a formula connecting them with the 3 – step stairs.

Grid size

Formula

Pattern

8 x 8

6n + 36

6n + 4*8 + 4

9 x 9

6n + 40

6n + 4*9 + 4

10 x 10

6n + 44

6n + 4*10 + 4

The overall formula for the grid size and the 3 step stairs horizontally, vertically and diagonally is Un = 6n + 4g + 4

n = stair number

g = grid number

Therefore to find the total for stair number 5 on a 5 x 5 grid I will simply use the formula U5 = 6*5 + 4*5 + 4 and the answer is 54.

From the comparison between the grid size and position of 3 - step stair, I have found a new and easier formula to use using the 3 – step stair shape which when added makes the same formula as 6n + 4g + 4.

n+2g

n+g

n+g+1

n

n+1

n+2

...read more.

Conclusion

73

74

75

76

77

78

79

80

81

64

65

66

67

68

69

70

71

72

55

56

57

58

59

60

61

62

63

46

47

48

49

50

51

52

53

54

37

38

39

40

41

42

43

44

45

28

29

30

31

32

33

34

35

36

19

20

21

22

23

24

25

26

27

10

11

12

13

14

15

16

16

18

1

2

3

4

5

6

7

8

9

37

28

29

19

20

21

10

11

12

13

1

2

3

4

5

38

29

30

20

21

22

11

12

13

14

2

3

4

5

6

39

30

31

21

22

23

12

13

14

15

3

4

5

6

7

Stair Number

Addition

Total

Pattern

1

1 + 2 + 3 + 4 + 5 + 10 + 11 + 12 + 13 + 19 + 20 + 21 + 28 + 29 + 37

215

15*1 + 200

2

2 + 3 + 4 + 5 + 6 + 11 + 12 + 13 + 14 + 20 + 21 + 22 + 29 + 30 +38

230

15*2 + 200

3

3 + 4 + 5 + 6 + 7 + 12 + 13 + 14 + 15 + 21 + 22 + 23 + 30 + 31 + 39

245

15*3 + 200

The formula for the 9 x 9 grid for 5 – step stairs is Un = 15n + 200

n = stair number

Therefore to find the total for stair number 9 I will simply use the formula, which will be U9 = 15*9 + 200 and the answer is 335.  

8 x 8 grid

57

58

59

60

61

62

63

64

49

50

51

52

53

54

55

56

41

42

43

44

45

46

47

48

33

34

35

36

37

38

39

40

25

26

27

28

29

30

31

32

17

18

19

20

21

22

23

24

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

33

25

26

17

18

19

9

10

11

12

1

2

3

4

5

34

26

27

18

19

20

10

11

12

13

2

3

4

5

6

35

27

28

19

20

21

11

12

13

14

3

4

5

6

7

Stair Number

Addition

Total

Pattern

1

1 + 2 + 3 + 4 + 5 + 9 + 10 + 11 + 12 + 17 + 18 + 19 + 25 + 26 + 33

195

15*1 + 180

2

2 + 3 + 4 + 5 + 6 + 10 + 11 + 12 + 13 + 18 + 19 + 20 + 26 + 27 + 34  

210

15*2 + 180

3

3 + 4 + 5 + 6 + 7 + 11 + 12 + 13 + 14 + 19 + 20 + 21 + 27 + 28 + 35

225

15*3 + 180

The formula for the 8 x 8 grid for 5 – step stairs is Un = 15n + 180

n = stair number

Therefore to find the total for stair number 8 I will simply use the formula, which will be U8 = 15*8 + 180 and the answer is 300.  

Grid size

Formula

Pattern

8 x 8

15n + 180

15n + 20*8 + 20

9 x 9

15n + 200

15n + 20*9 + 20

10 x 10

15n + 220

15n + 20*10 + 20

The overall formula for the grid size and the 5 - step stairs horizontally, vertically and diagonally is Un = 15n + 20g + 20

n = stair number

g = grid number

Therefore to find the total for stair number 7 on a 7 x 7 grid I will simply use the formula U7 = 15*7 + 20*7 + 20 and the answer is 265.

Step stair

Formulae

Pattern

3

6n + 4g + 4

[3(3+1)/2]n + [(3- 1)*3*(3+1)/6]g + [(3-1)*3*(3+1)/6]  

4

10n + 10g +10

[4(4+1)/2]n + [(4-1)*4*(4+1)/6]g + [(4-1)*4*(4+1)/6]  

5

15n + 20g + 20

[5(5+1)/2]n + [(5-1)*5*(5+1)/6]g + [(5-1)*5*(5+1)/6]  

Un = [s(s+1)/2]n + [(s-1)*s*(s+1)/6]g + [(s-1)*s*(s+1)/6]

Pascal's Triangle

1

1

1

1

2

1

1

3

3

1

1

4

6

4

1

1

5

10

10

5

1

1

6

15

20

15

6

1

1

7

21

35

35

21

7

1

1

8

28

56

70

56

28

8

1

Triangular numbers – 1 , 3 , 6 , 10 , 21 , 28 ……

Un = n*(n+1)/2

Tetrahedral numbers – 1 , 4 , 10 , 15 , 35 , 56 ……

Un = n*(n+1)*(n+2)/6

Hyper tetrahedral numbers – 1 , 5 , 15 , 35 , 70 ……

Un = n*(n+1)*(n+2)*(n+3)/24

I have realised that our formula involves triangular and tetrahedral numbers along with hyper tetrahedral number, which can be found on Parcel’s triangle. Their relationship with one another is triangle number have a difference of square numbers, tetrahedral number have a difference of triangle numbers and hyper tetrahedral number have a difference of tetrahedral numbers.

Derrick Gachiri

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number stairs

    59 60 37 38 39 40 41 42 43 44 45 46 47 48 25 26 27 28 29 30 31 32 33 34 35 36 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12

  2. Number Grid Investigation.

    There is a pattern forming, so I can predict that there will be an nth term for finding any product difference within the sequence for the 9x9 grid. 1st 2nd 3rd 4th 2x2 3x3 4x4 5x5 9 36 81 144 27 45 63 18 18 N th term Product difference p.d.

  1. Investigation of diagonal difference.

    I will then see if G is applicable. The diagonal difference is 40 Is the diagonal difference of a 3 x 3 cutout the same anywhere on the 10x10 grid? Investigating further cutouts I will now calculate the diagonal difference of a 3 x 3 cutout on a 10 x 10 grid using n.

  2. Number Grids Investigation Coursework

    (n - 1) and my algebraic expression for the difference between the products of opposite corners cancelled down to wp2 (m - 1)

  1. Algebra Investigation - Grid Square and Cube Relationships

    Because the second answer has +20 at the end, it demonstrates that no matter what number is chosen to begin with (n), a difference of 20 will always be present. 3x3 Rectangle Firstly, a rectangle with applicable numbers from the grid will be selected as a baseline model for testing.

  2. Step-stair Investigation.

    76 77 78 79 80 61 62 63 64 65 66 67 68 69 70 51 52 53 54 55 56 57 58 59 60 41 42 43 44 45 46 47 48 49 50 31 32 33 34 35 36 37 38 39 40 21 22 23 24 25

  1. Number Grid Investigation.

    1)� I will now try this formula in a 5 X 5 grid. Something I have not yet investigated. 10(5 - 1)� = 160. Let's see if this is correct. Here is a 5 X 5 square taken from a 10 wide grid: 22 23 24 25 26 32 33

  2. What the 'L' - L shape investigation.

    multiplied by g to allow it to work in any sized grid. So far my formula consists of: - (CL) + (- ( ?x )g + (?y)) I will use the same symbols that I used in the formula in Part 2 and will be applying the plus and minus rule.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work