• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  • Level: GCSE
  • Subject: Maths
  • Word count: 1006

Number Grid

Extracts from this document...

Introduction

Number Grid I have been given the following task: I will now carry out this investigation in four different parts. The 1st part includes 1 variable; which is the one given to me on the task sheet. I am going to investigate what the difference between the opposite products inside a square shaped box is. I will calculate the differences using the grid for 4 different sized square boxes and then put my results into a table. After doing this for all 4, I will look for a pattern with all my data and try to come up with a general formula which will give me my nth term. After getting my formula, I will predict an nth term using the formula and also calculate the differences using the grid and see whether my formula is correct. For the 2nd part of the investigation, I will be using 2 variables to extend the task further. ...read more.

Middle

Rectangles Multiple Grids Size, Shape and Multiple Conclusion In conclusion, I have found many formulas, either to do with the shape of the box inside the grid, the size of the main grid or the multiple of the main grid. While doing this investigation, I noticed a link between all of my formulas and therefore combined all of them together at the end to make one final formula containing 4 variables; the multiple of the grid, the size of the main grid, the length of the box inside the grid and the width of the box inside the grid. I noticed that there is a reason for every number in the formula to be there and investigated why that number was present and what would happen to that number if the circumstances changed. This means that I have done 3 extensions all together; ranging from 1 to 4 variables. ...read more.

Conclusion

Evaluation Overall, I think my investigation went well because I had extended all my tasks and had up to 4 variables. I completed the given task in as much detail as possible and referred my extensions back to the original given task. If I had more time to complete this assignment, I would have changed the shape of the "box" inside the grid and maybe even involve 3D shapes. I could have also investigated the difference of the products from the opposite numbers inside a rectangular main grid; instead of changing the shape and size of the box inside the grid. Additionally, I could have considered that if the numbers inside the grid included negative numbers, then there may be a change to the general formula. On the whole, I had no major problems within the course of my assignment, and felt than everything went smoothly. As I had extended my task to 4 variables, I believe that I had done everything I was asked to in the task and maybe more. ?? ?? ?? ?? Number Grid 1 Pooja Patel 11CCy ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Algebra Investigation - Grid Square and Cube Relationships

    Testing: Using the experimental number box above, it is possible to prove that the formula works, and is correct. The box had a height and width of 2x2, and was based on the 5x5 grid in question. As the number box clearly demonstrates, a difference of 5 should be present.

  2. Investigate the differences between products in a controlled sized grid.

    5 represents the top left hand number in the box. This is to prove the equation is correct and that the difference is 90. x�+33x x�+33x+90 5�+(33*5) 5�+(33*5)+90 =190 =280 280-290= 90 This proves that the equation does work

  1. Number Grid Investigation

    As it doesn't really matter which is the length or the width. 26 27 28 36 37 38 26 x 38 = 988 Difference = 20 28 x 36 = 1008 I will now prove that the difference in a 3 x 2 rectangle is 20, I will also be

  2. Number Grid Investigation.

    5 X 5 6 X 6 7 X 7 8 X 8 Product Difference 10 40 90 160 250 360 490 I then noticed that there is a number pattern within the results. 10 40 90 160 250 \ / \ / \ / \ / \ 30 50 70

  1. What the 'L' - L shape investigation.

    Also note that the number vertically up from the L-Number is referred to as L-9, the second is L-18. Note that 9 is the grid square and 18 is double the grid size and two rows up. The sum of the shape above gives me the last part of the formula, which is -24: 1 + 2 + (-9)

  2. For other 3-step stairs, investigate the relationship between the stair total and the position ...

    For example for a 10x10 numbered grid using a 5-step stair the formula is 15x-180 then we increase the grid size by 1, 11x11 and using the same 5-stepped stair approach the formula is 15x-200, etc. We can clearly see the constant number [20] is consistent every time the grid size increases by [1].

  1. Maths - number grid

    By reassessing my previous answers I have become aware of the following trend: 30 50 70 10 40 90 160 To confirm that this pattern I have found is truthful I will predict that in an 8x8 square the defined difference will be 490.

  2. number grid

    I am now going to repeat my investigation again so that my results are more reliable and so I can create a table with them. _190 180 10 For this 2 X 2 grid I have done the exact same thing as I did for the first one.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work