• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  • Level: GCSE
  • Subject: Maths
  • Word count: 1006

Number Grid

Extracts from this document...

Introduction

Number Grid I have been given the following task: I will now carry out this investigation in four different parts. The 1st part includes 1 variable; which is the one given to me on the task sheet. I am going to investigate what the difference between the opposite products inside a square shaped box is. I will calculate the differences using the grid for 4 different sized square boxes and then put my results into a table. After doing this for all 4, I will look for a pattern with all my data and try to come up with a general formula which will give me my nth term. After getting my formula, I will predict an nth term using the formula and also calculate the differences using the grid and see whether my formula is correct. For the 2nd part of the investigation, I will be using 2 variables to extend the task further. ...read more.

Middle

Rectangles Multiple Grids Size, Shape and Multiple Conclusion In conclusion, I have found many formulas, either to do with the shape of the box inside the grid, the size of the main grid or the multiple of the main grid. While doing this investigation, I noticed a link between all of my formulas and therefore combined all of them together at the end to make one final formula containing 4 variables; the multiple of the grid, the size of the main grid, the length of the box inside the grid and the width of the box inside the grid. I noticed that there is a reason for every number in the formula to be there and investigated why that number was present and what would happen to that number if the circumstances changed. This means that I have done 3 extensions all together; ranging from 1 to 4 variables. ...read more.

Conclusion

Evaluation Overall, I think my investigation went well because I had extended all my tasks and had up to 4 variables. I completed the given task in as much detail as possible and referred my extensions back to the original given task. If I had more time to complete this assignment, I would have changed the shape of the "box" inside the grid and maybe even involve 3D shapes. I could have also investigated the difference of the products from the opposite numbers inside a rectangular main grid; instead of changing the shape and size of the box inside the grid. Additionally, I could have considered that if the numbers inside the grid included negative numbers, then there may be a change to the general formula. On the whole, I had no major problems within the course of my assignment, and felt than everything went smoothly. As I had extended my task to 4 variables, I believe that I had done everything I was asked to in the task and maybe more. ?? ?? ?? ?? Number Grid 1 Pooja Patel 11CCy ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. What the 'L' - L shape investigation.

    By looking at all of the different grid sizes and their formulae. I can note that they all start with 5L; therefore, my final formula must consist of 5L. Grid Size Final Part Of The Formula Difference 4 by 4 -9 5 by 5 -12 6 by 6 -15 7

  2. Number Grid Investigation.

    (x + 24) = x� + 24x + 3x + 72 = 27x� + 72. 27x� - 27x� + 72 = 72. Product difference = 72. This shows why 128 is obtained as the diagonal product difference of a 5 X 5 grid.

  1. Algebra Investigation - Grid Square and Cube Relationships

    Algebraic Investigation 3: Boxes on a 'g' x 'g' Grid, with Increments of 's' The second investigation comprises of two main parts Part A: Changing Grid Size, 'g' After completing all the stages previously detailed, it is now a logical decision to consider and investigate changing the actual dimensions of the overall grid.

  2. Investigate the differences between products in a controlled sized grid.

    I am now going to investigate a 4 by 4 box in a 10 by 10 grid. Investigation on 4 by 4 boxes in a 10 by 10 grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

  1. Number grid Investigation

    37 38 44 45 46 47 48 I repeated this process four times with other numbers from the grid to see if the difference would change. 4 x 48 = 192 44 x 8 = 352 352 - 192 = 160 The difference is 160.

  2. For other 3-step stairs, investigate the relationship between the stair total and the position ...

    83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 x-44 x-33 x-32 x-22 x-21 x-20 x-11 x-10 x-9 x-8 X X+1 X+2 X+3 X+4 Using the algebra equation and adding the

  1. number grid

    4 x 4 Grid Prediction I believe that this difference of 90 should be expected to remain constant for all 4x4 number boxes. I will now investigate to check if all examples of 4x4 grid boxes demonstrate this trend in difference.

  2. For my investigation I will be finding out patterns and differences in a number ...

    After I have completed all of my working out and results I should then do a conclusion to sum up what I have found out from my investigation. Statement I have found out the differences for the 2x2, 3x3, 4x4 and 5x5 squares and they are shown below.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work