• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26
  27. 27
    27
  28. 28
    28
  29. 29
    29
  • Level: GCSE
  • Subject: Maths
  • Word count: 4251

Number Grid

Extracts from this document...

Introduction

Number Grid

Introduction

I am going to be looking at a 10x10 square and drawing a square around a 2x2 square around 4 numbers and multiplying the top left number by the bottom right number and multiplying the top right number by the bottom left. I will find out the difference and do 2 more and see if there is a pattern. I will then investigate this further. I will first be looking at a 10x10 square.

2x2

Example 1

image00.png

image01.png

Top Left x Bottom Right-12 x 23= 276

Top Right x Bottom Left-13 x 22= 286

286-276=10

The difference is 10. I will now look at 2 more examples and see if this continues

Example 2

image12.png

Top Left x Bottom Right-35 x 46= 1610

                          Top Right x Bottom Left- 36 x 45= 1620

                           1620-1610=10

Example 3

image23.png

                        Top Left x Bottom Right- 81 x 92=7452

                        Top Right x Bottom Left- 82 x 91=7462

                        7462-7452= 10

The difference of all 3 examples was 10 so it must be the same for any 2 x 2 in that particular number grid.

General Rule For 2x2

If we look at the 2x2 algebraically then it would look like this:-

                             Top Left x Bottom Right- (X)(X+11)=X2+11Ximage34.png

                             Top Right x Bottom Left- (X+1)(X+10)=X2+11X+10

Prove

X=2

Top Left x Bottom Right-(2)2+11(2)=4+22=26

Top Right x Bottom Left-(2)2+11(2)+10=4+22+10=36

36-26=10    QED

This proves the difference is always 10

3x3

I will now be looking at a 3x3 square and seeing if it follows a rule as well.

Example 1

                                          Top Left x Bottom Right- 36 x 58= 2088image45.png

                                          Top Right x Bottom Left- 38 x 56= 2128

                                           2128-2088= 40

The difference is 40. I will now do 2 further examples to see if this is the same for those 2

Example 2

image56.png

                              Top Left x Bottom Right- 72 x 94= 6768image67.pngimage67.png

                              Top Right x Bottom Left- 74 x 92= 6808

                              6808-6768= 40

Example 3

image81.png

                           Top Left x Bottom Right- 6 x 28= 168

                           Top Right x Bottom Left- 8 x 26= 208

                           208-168

General Rule For 3x3

...read more.

Middle

2+10X(N-1)+X(M-1)+10(N-1)(M-1)

T.R. X B.L. – T.L. x B.R.=X2+10X(N-1)+X(M-1)+10(N-1)(M-1)-X2+10X(N-1)+X(M-1)

                                         =10(N-1)(M-1)

Prove

M=3 N=2

10(2-1)(3-1)=10(1)(2)=20 QED

This is correct as the difference for a 3x2 rectangle is 20 so this proves this equation can be used for any MxN square

I will now be looking at the same shapes in a different number grid. One which has row’s of 11 instead of 10, basically a 11x10 number grid.

image22.png

2x2

I will be looking at a 2x2 square in this new grid and seeing if it follows any patterns.

Example 1

image24.png

               Top Left x Bottom Right- 27 x 39=1053

               Top Right x Bottom Left- 28 x 38= 1064

1064-1053= 11

The difference is 11. I will do 2 more examples to see if this is the pattern

Example 2

image25.png

                Top Left x Bottom Right- 54 x 66= 3564

                Top Right x Bottom Left- 55 x 65= 3575

3575-3564=11

Example 3

image26.png

                         Top Left x Bottom Right- 79 x 91= 7189

                         Top Right x Bottom Left- 80 x 90= 7200

General Rule For 2x2

If we look at the 2x2 square algebraically it would look like this:-

image27.png

                       Top Left x Bottom Right- (X)(X+12)= X2+12X

                       Top Right x Bottom Left- (X+1)(X+11)=X2+12X+11

Prove

X=2

Top Left x Bottom Right- (2)2 +12(2)=4+24=28

Top Right x Bottom Left- (2)2+12(2)+11=4+24+11=39

39-28=11 QED

This proves the difference is always 11

3x3

I will now be looking at a 3x3 square in this number grid and seeing if it follows a pattern.

Example 1

image28.png

                             Top Left x Bottom Right- 1 x 25= 25

                             Top Right x Bottom Left- 3 x 23= 69

                             69-25= 44

The difference is 44. I will do further examples to see if there is a pattern.

Example 2

image29.png

                             Top Left x Bottom Right- 31 x 55= 1705

                             Top Right x Bottom Left- 33 x 53= 1749

                             1749-1705= 44

Example 3

image30.png

                                 Top Left x Bottom Right- 71 x 95= 6745

                                 Top Right x Bottom Left- 73 x 93= 6789

                                 6789-6745= 44

General Rule For 3x3

...read more.

Conclusion

image75.png

                                                       Top Left x Bottom Right- (X)(X+65)=X2+65X

                                                       Top Right x Bottom Left- (X+15)(X+50)= X2+65X+750

Prove

X=2

Top Left x Bottom Right- (2)2+65(2)=4+130=134

Top Right x Bottom Left- (2)2+65(2)+750=4+130+750= 884

884-134=750 QED

This proves the difference is always 750

5x2

I will now be looking at a 5x2 rectangle in this particular grid.

Example 1

                                                          Top Left x Bottom Right- 50 x 120= 6000image76.png

                                                          Top Right x Bottom Left- 70 x 100= 7000

                                                           7000-6000=1000

The difference is 1000. I will do 2 further examples to see if this is the same for those as well.

Example 2

image77.png

                                                          Top Left x Bottom Right- 25 x 95= 2375

                                                          Top Right x Bottom Left- 45 x 75= 3375

                                                          3375-2375=1000

Example 3

If we look at a 4x2 rectangle algebraically it would look like this:-

image78.png

                                                        Top Left x Bottom Right- 405 x 475= 192375

                                                        Top Right x Bottom Left- 425 x 455= 193375

                                                        193375-192375=1000

General Rule For 5x2

If we look at a 4x2 rectangle algebraically it would look like this:-

image79.png

                                                                        Top Left x Bottom Right- (X)(X+70)=X2+70X

                                                                        Top Right x Bottom Left- (X+20)(X+50)= X2+70X+1000

Prove

X=2

Top Left x Bottom Right- (2)2+70(2)=4+140=144

Top Right x Bottom Left- (2)2+70(2)+1000=4+140+1000=1144

1144-144=1000 QED

This proves the difference is always 1000

General Rule For MxN

An M x N rectangle can also be written like this. I have only included the four numbers that are used in the multiplication as the others are not necessary in this equation.

image80.png

Top Left x Bottom Right- (X)(X+50N-50+5M-5)=X2+50NX-50X+5MX-5X

Top Right x Bottom Left- (X+5M-5)(X+50N-50)= X2+50NX-5X+5MX-5X+(50N-50)(5M-5)

T.R.xB.L.-T.L.xB.R.=X2+50NX-5X+5MX-5X+(50N-50)(5M-5)- X2+50NX-50X+5MX-5X

                                                    = (50N-50)(5M-5)= 250MN-250N-250M+250

Prove

M=3 X=2

250MN-250N-250M+250=250(3)(2)-250(2)-250(3)+250=1500-500-750+250=500

*the difference for 3x2 is 500

Conclusion

In this piece I have proved that in any number grid, as long as the number sequences follow a regular pattern, there is a NxN and MxN pattern which will work and have separate rules and results for separate grids.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Investigation of diagonal difference.

    7 x 8 grid 7 x 7 grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

  2. Algebra Investigation - Grid Square and Cube Relationships

    = Top Right (TR) + Bottom Left (BL) As also shown by the summary boxes and examples above, the formula for the top right number remains constant, and is linked with the width, w, of the box in the following way: Formula 2: Top Right (TR)

  1. Investigate the product of the top left number and the bottom right number of ...

    90 34 x 61 = 2074 39 x 66 = 2574 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

  2. Mathematics - Number Stairs

    15 x 34 + 180 = 690 66 58 59 50 51 52 42 43 44 45 34 35 36 37 38 34 + 35 + 36 + 37 + 38 + 42 + 43 + 44 + 45 + 50 + 51 + 52 + 58 + 59 +

  1. number grid

    = 160 When finding the general formula for any number (n), both answers begin with the equation n2+44n, which signifies that they can be manipulated easily. Because the second answer has +160 at the end, it demonstrates that no matter what number is chosen to begin with (n), a difference of 160 will always be present.

  2. A box is drawn around four numbers. Find the product of the top left ...

    An equation can be formed to show this working and that it will happen anywhere upon a ten by ten grid. An algebraic example of this could be N N+1 N+10 N+11 N + 1 x n + 10 - n + 11 n� + n + 10n + 10 - (n� + 11x)

  1. Algebra - Date Patterns.

    Fusing these formulas resulted in: (n + 7) x (n + 1) - n x (n + 8) = d or n2 + n + 7 x n + 7 - (n2 + 7 x n + n) = d d = difference eg: 4 5 11 12 4 x 12 = 48 5 x 11 = 55 55 - 48 = 7 (4 + 7)

  2. For my investigation I will be finding out patterns and differences in a number ...

    x 6 = 306 306 - 56 = 250 45 46 47 48 49 50 55 56 57 58 59 60 65 66 67 68 69 70 75 76 77 78 79 80 85 86 87 88 89 90 95 96 97 98 99 100 45 x 100 = 4500

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work